
Using TPC-C to 
study Firebird 
Performance

Paul Reeves
IBPhoenix

mail: preeves at ibphoenix.com





About the speaker

I work for IBPhoenix providing technical support.

I maintain the windows installer for Firebird and do the Win-
dows builds.

 



Introduction

The aim of this talk is to use the TPC-C 
benchmark to study :

How does Firebird perform under load?

Can we use the data collected from the tests to 
make evidence based decisions that will improve 
application performance?



What is TPC-C
Models typical OLTP application
Old fashioned “bricks'n'mortar” business – 
perhaps a wholesaler providing stock to 
shops?
Five randomly generated workloads

New Orders (45%)
Payments (43%)
Deliveries (4%)
Stock-level checks (r/o) (4%)
Order Status (r/o) (4%)

Its main metric is the number of new orders 
per minute.



What's good about the benchmark ?

Simple
Synthetic
(Fairly ) consistent, despite a high degree of 
randomisation.
Stable platform to generate hundreds of 
hours of test data. (500+ so far.)
Studying real data under load is always bet-
ter than guess work.



What's bad about the benchmark ?

No blobs
No stored procedures
Nothing special at all, really
Very few business rules
Very simple data model
Very short rows
Difficult to overload the hardware
And, of course, it is not your data or your 
application.



The Test Harness
Provides a consistent unchanging platform
Server is 4-core x64 CPU with 8 GB RAM
H/W Raid controller with

4 * HDDs configured in RAID 10
2 * SSDs configured in RAID 1

Dual boots to 
Windows 2012
openSUSE 13.1

Firebird 2.5.3 is installed with SS,CS and SC open on different 
ports, using a single configuration file.

Network connection is 1 Gbit.
Client is another 4-core x64 CPU with 8 GB RAM
The Benchmark app is written in Java executed from the client
Test details and test results are stored in a separate Firebird 
database (on a remote server) for analysis.



Outline of the tests

Firebird defaults except :
3000 buffers hardcoded into each DB
Sweep set to 0
SS tied to two CPU (Windows Only) 

Each test run consists of
Sweep
gstat full before test
15 minute test
gstat full after test

No special configuration of host O/S
But updates applied.

Test Series are fully automated



Test Coverage

Windows, Linux
HDD (RAID 10), SSD (RAID 1)
SuperClassic, Classic, SuperServer
Small, Large and Very Large Databases

 1 GB (effectively in memory)
10 GB (must use the file system cache.
40 GB (too large for fs cache so lots of swapping.)

10..100 connections in steps of 10 connections

That is a lot of test combinations (360)



Caveats - I

Results are specific to :

Firebird 2.5.3

This test harness

The results can only be a guide, not a rule.

The main message to take away is the 
patterns the graphs produce, not the 
actual numbers.



Caveats – II

Connections are NOT users

Basically the test harness is using a 
connection pool



At last, let's look at some of the 
results 



HDD vs SSD

Overall, SSD is clearly a winner



Database Size and HDD vs SSD

The story is not so simple...



Architecture



Windows vs Linux



Where is the problem with Windows performance?



Windows and Super Server still have a problem...



Influence of growing DB on performance



Impact of increased connections on TXN time



Impact of increased connections on 
Max TXN time



Impact of increased connections on NO PM



So, why the slow down as 
connections increase?

New orders randomly add ~10 line items per order.
Each line item requires an update of the quantity in the 
stock table.
There are ~100,000 stock items.
Even so, two txns could each order 10 items, and just 
one of which is identical to each txn.
So we have 18 items locked for update and one dead-
locked.

A third txn comes along and tries to lock on of these 19 
items and so we now have 28 or 29 products locked.

No order can commit until it has updated stock levels for 
all line items.
And so it goes...



What can we learn from this?

Fundamentally database architecture and 
application design have a profound effect on 
application performance.
Ideally performance issues should be fixed 
at this level.
For the TPC-C benchmark this means look-
ing at other ways to manage the update of 
the stock levels.
Of course this takes the most time and ef-
fort and doesn't solve the immediate prob-
lem.



Can we use the test harness to 
advise us on how to improve 

performance?

The Hypothesis
By running lots of tests with different 

configurations we can take averages of 
each test series and derive an optimal 

configuration.



We will look at three configuration 
parameters

Page Size
Buffers

Hash Slots

For each parameter we will run our test 
series, changing a single value each time.



Page Size
8K appears to be ~17% better than 4K.
And 16K not so interesting.



Page Size and Disc

But again, things are not so simple...



Super Server and Page Size
The previous slide indicated that 8K page size was optimum, 

but apparently this is not true for SS.



Buffers



Buffers – Classic Server

Less is more



Buffers – Super Classic

Can use more buffers
~7 % improved performance over classic



Buffers – Super Server

Chosen correctly can lead to 80% performance improvement over SC
Note impact of 128K buffers – disables file system caching!



Buffers

Incorrect settings have a massive (bad) impact 
Each architecture has different behaviour
Must analyse by architecture
CS – smaller is better
SC (2.5 only) prefers smaller over larger
SS – increase buffers to look for sweet spot – more is not 
better.
(Tests carried out on 10 GB DB)



Hash Slots

All database access generates lock table 
activity, even just simple selects.
Locks are located via a hash table.
They are linked in chains.
The chains are searched sequentially.
More hash slots allows for shorter chains.

So in theory as connections increase we 
have more lock contention, and therefore 
more hash slots should improve perform-

ance.



The effect of different Hash Slots values



Towards an Optimal Config?

To summarize:

8K page size seems preferable for SC and CS

4K page size seems better for SS but we'll test both

8009 Hash Slots seems to improve performance for all ar-
chitectures.

Each arch. Has specific sweet spots for buffers
SC – 3000. 
CS – 1000, perhaps 1500 ? 
SS – 32000.

So, lets see how that works...



Compare Optimal to Defaults – Linux, SSD 1GB DB



Compare Optimal to Defaults – Linux, HDD 1GB DB



Compare Optimal to Defaults – Linux, SSD, 10GB



Compare Optimal to Defaults – Linux, HDD, 10GB



Compare Optimal to Defaults – Linux, SSD, 40GB



Compare Optimal to Defaults – Linux, HDD, 40GB



The big question

Why don't SSDs seem to respond to our 
configuration techniques?



SSDs and SuperClassic - a recap



SSDs and Classic - a recap



SSDs and SuperServer - a recap



So why has SSD performance 
degraded?

While reviewing this presentation I noticed 
that there was no analysis of the hash slots 
data.
Perhaps the answer lies there?
Let's take a look.



Perhaps the hash slots change is the 
problem with diminished SSD performance?



And our hypothesis?
It clearly worked for HDDs
SSDs did not respond or actually performed 
more poorly due to inadequate analysis (but 
we didn't know that until we had done the 
tests.) 
Ultimately this hypothesis failed but that is 
not a bad thing – we have learnt that:

SSDs perform very differently to HDDs

Determining optimal configurations requires much more 
refined data analysis.

Optimal Settings do not transfer automatically to a 
different setup.
Bad configuration choices have just as much an impact 
on performance as good ones do. ☺ 



Where next with this research?

Obviously work needs to be done to understand 
better how to get the best performance out of 
SSDs
Can the optimal configuration be refined further?

What happens when we try different hash slots with our 
'optimal' page size and buffers?
Ditto for a different page size.

What happens if we play around a bit with the File 
System Cache size and the number of buffers?

What happens if we remove the sources of lock 
contention in the application/data model?

Lots of questions that still need answers.



Summary
For Firebird 2.5.3 and this test harness...

SSDs are better than HDDS, especially for VLDBs

Linux and Windows perform similarly, except for SS under 
Windows.

Usually SS is better than SC which is better than CS

8K page size is usually better than 4K except for SS for 
HDDs

Smaller buffers are better for CS

SC doesn't care neither for large buffers nor small

SS likes large buffers but not so big as to disable the file 
system cache.

SSDs do not appear to respond to the same performance 
tweaks as HDDs.



Conclusion

There is a fine balance to be had in all 
performance tweaking.
Test everything.
There is no universal optimised config.



Questions?



 
And finally, a big thankyou to all 
the sponsors who have helped 
make this conference possible...


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

