Introduction

http://nodejs.org/about/

Introduction to Node

What is Node ?

node standard library

node bindings
(socket, htip, etc)

thread

V8 poc

(1ssuedy)
odfug

(libeio)

Node is an open source toolkit for developing server side applications based on the V8
JavaScript engine. Like Node, V8 is written in C++ and is mostly known for being used in
Google Chrome.

Node is part of the Server Side JavaScript environnement and extend JavaScript API to offer
usual server side functionalities.

It's spirit is similar to Twisted for Python and EventMachine for Ruby
http://timetobleed.com/eventmachine-scalable-non-blocking-io-in-rubyy/.

http://www.google.com/url?q=http%3A%2F%2Fnodejs.org%2Fabout%2F&sa=D&sntz=1&usg=AFQjCNEXXY6YW7cqJMAEmJkTXrM2kWavVg
http://www.google.com/url?q=http%3A%2F%2Ftwistedmatrix.com%2F&sa=D&sntz=1&usg=AFQjCNGAfPMiN7_YJyzCBW8DgpdGiJ0dpg
http://www.google.com/url?q=http%3A%2F%2Frubyeventmachine.com%2F&sa=D&sntz=1&usg=AFQjCNEuBADK-vApfks3yjbZdds7vIZufw
http://www.google.com/url?q=http%3A%2F%2Ftimetobleed.com%2Feventmachine-scalable-non-blocking-io-in-ruby%2F&sa=D&sntz=1&usg=AFQjCNE48bpNg35vohcGpuCR0Kgz9APReA

Event Handler

+handle_events()
+register_handler()

Event Demultiplexer

1
sremove_handler()] |,
el G e
! Handle

+register_handle{)
+demultiplex()

= -

+handle_event()
+gel handlef)f)

iConcrete Event Handler

+hanale_ewventf)

+get_handlefi{}

Reactor Pattern http://chamibuddhika.wordpress.com/2012/08/

Application Concrete Event Handler Eeactor Event Demultiplexer
i i ' i
I 1 I I
- Concrete : dertsn e - :

register_handler
event handler | event : I
1 I
: det_handlef) :
kel I
r 1
egReT s anty
]
result
: O AL [
|
T R 7
T] 1 |
1 1 —i S
I handle_?vents{) demultiplex eveant
I 1
5 - PSRN =
I handle_event(
I g
I |
I o I
: servicel : :
I 1 |
I I I
I 1] I
I] I I
I 1 ' I
Reactor

http://www.google.com/url?q=http%3A%2F%2Fchamibuddhika.wordpress.com%2F2012%2F08%2F&sa=D&sntz=1&usg=AFQjCNEnIswKIBNFGBXx-buCOtX2Q_FhAQ

Dispatcher

)
_— select()
Initiate for each Handle
Server & handler.handle(Handle)
Dispatcher end for
Loop
Reactor Execute
Initiator Register —— l
Connections m
& Wait on 3
events Readiness [Event Handler]
Events
S"nch ONOLIS L 4 A Implements
ynchronou ; : -
— Demultiplexer Y
Selector B

Concrete Event
Handler

Node’s Goal ?

It's goal is to offer an easy and safe way to build high performance and scalable network
applications in JavaScript.
Those goals are achieved thanks it's architecture:

e Single Threaded :
Node use a single thread to run instead of other server like Apache HTTP who spawn a
thread per request, this approach result in avoiding CPU context switching and massive
execution stacks in memory. This is also the method used by nginx and other servers
developed to counter the C10K problem.

e EventLoop:
Written in C++ using libuv library, the event loop use epoll for scalable event notification
mechanism.

e Non blocking I/O :
Node avoid CPU time loss usually made by waiting for an input or an output response
(database, file system, web service, ...) thanks to the full-featured asynchronous 1/O provided
by libuv library.

These characteristics allow Node to handle a large amount of traffic by handling as quickly as

http://www.google.com/url?q=http%3A%2F%2Fwiki.nginx.org%2F&sa=D&sntz=1&usg=AFQjCNFo0t7Ia90od_61ap8GTeY1y-iTrg
http://www.google.com/url?q=http%3A%2F%2Fwww.kegel.com%2Fc10k.html&sa=D&sntz=1&usg=AFQjCNGtTLrM31SPGEYBDjpjSU6tVYQYKA
http://www.google.com/url?q=http%3A%2F%2Fnikhilm.github.io%2Fuvbook%2Fintroduction.html&sa=D&sntz=1&usg=AFQjCNHV9LRyHlY-xKFfYTiqYHeNzAtT0A

possible a request to free the thread for the next one.

Node has a built-in support for most important protocols like TCP, DNS, and HTTP (the one
that we will focus on). The design goal of a Node application is that any function performing
an 1/0 must use a callback. That's why there is no blocking methods provided in Node’s API.

JavaScript

Being an Event Driven Language, Javascript is the most suited to develop on the Node’s
“Event Loop” architecture. Node’s applications really use javascript's strengths like
anonymous functions and closures.

/ ILoading required modules
var http = require('http");

var SERVER_PORT = 8124;

/I Creating HTTP Server

var server = http.createServer(function(request, response){
/I Called each time a request is made.
response.writeHead(200, {'Content-Type'": 'text/plain'});
response.end('Hello World\n');

h;

/[Starting the server
server.listen(SERVER_PORT);

console.log('Server running on port : ' + SERVER_PORT);

This is quiet simple, we just create a http server by requiring the HTTP module and calling the
createServer method. The callback method will be executed each time a request comes in.

To start the server call :

$ node server.js

Server running on port : 8124

We can now access to the server by using http://localhost:8124 and see the "Hello World".

Adding Socket.IO

http://socket.io/#how-to-use

The next step is to use Socket.lO to handle long-terms connections, replace the server.js
content by the following one:

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAnonymous_function%23JavaScript&sa=D&sntz=1&usg=AFQjCNGpIsp5AlcbPWOoytqeDOdXjS6XPw
https://www.google.com/url?q=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FJavaScript%2FGuide%2FClosures&sa=D&sntz=1&usg=AFQjCNHgmUN6KGLv2wuPteeXIfUg9BHGDg
http://www.google.com/url?q=http%3A%2F%2Fsocket.io%2F%23how-to-use&sa=D&sntz=1&usg=AFQjCNHAih5WABwPn86ZoHpD-Eyw267Xew

/l Loading required modules
var http = require('http"),
io = require(‘/path/to/socket.io");

var SERVER_PORT = 8124,

Il Creating HTTP Server
var server = http.createServer();

/l Starting the server
server.listen(SERVER_PORT);

/I Attaching Socket.lO to the HTTP Server
var socket = io.listen(server);

console.log('Server running on port : ' + SERVER_PORT);

Two more lines, that’s the only things we need to add to attach the Socket.lIO module to the
http server.
You might have noticed that the callback function of the http.createServer() has been
removed, this is due to our use case where the server does not serve data to the client when
they make a request but directly push data when an event is raised.
We can put a callback to the io.listen() method, it will be fired each time a request comes from
the Socket.lO client side library.
var socket = io.listen(server,function(client){

/I new client connected !

h;

Socket 10 example : VNC client in 24 hours
http://engineering.linkedin.com/javascript/vncjs-how-build-javascript-vnc-client-24-hour-hackd

ay

Architecture

In order to get a VNC client working the browser, we needed the following pieces:

1. A way to connect to a remote server: the only way to do this within a browser is to use
a proxy. We built the proxy using Node.js and established a persistent connection to it
using socket.io.

2. Implement the RFB protocol: with Node.js abstracting away the TCP connection, the
next step was to use the REB protocol to communicate with the remote server.

3. Render the image in the browser: once the server was sending us data, we used the
HTML5 canvas element to render it in the browser. This worked well, as we can
conveniently transfer the 32bit pixel data in row major order directly to the canvas.

http://www.google.com/url?q=http%3A%2F%2Fengineering.linkedin.com%2Fjavascript%2Fvncjs-how-build-javascript-vnc-client-24-hour-hackday&sa=D&sntz=1&usg=AFQjCNFgUnQBUkRebiTsGxgvxdNVM0bYgg
http://www.google.com/url?q=http%3A%2F%2Fengineering.linkedin.com%2Fjavascript%2Fvncjs-how-build-javascript-vnc-client-24-hour-hackday&sa=D&sntz=1&usg=AFQjCNFgUnQBUkRebiTsGxgvxdNVM0bYgg
http://www.google.com/url?q=http%3A%2F%2Fnodejs.org%2F&sa=D&sntz=1&usg=AFQjCNHAf1oZljUcBKtB_Huqi9SDSqeHaQ
http://www.google.com/url?q=http%3A%2F%2Fsocket.io%2F&sa=D&sntz=1&usg=AFQjCNGWDC-AKotI9DJyh1qTAq4wF_lFRg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRFB_protocol&sa=D&sntz=1&usg=AFQjCNGvHIWxaCsYZcedDl4b94M8e-XmVQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCanvas_element&sa=D&sntz=1&usg=AFQjCNE1xb-jAbh_lUnSVWMsBhzYDc1zQg

tcp.js: A TCP proxy written on top of Node.js and Socket.lO

The first step was establishing connectivity between the browser, the Node.js proxy, and a
remote VNC host. Communication between the browser and Node.js is handled easily using
socket.io. However, communication between Node.js and the VNC host is more complicated:
it requires TCP.

http://www.google.com/url?q=http%3A%2F%2Fsocket.io%2F&sa=D&sntz=1&usg=AFQjCNGWDC-AKotI9DJyh1qTAq4wF_lFRg

We recognized the inevitable complexity of our hack and chose to spend a little extra time up
front to cleanly abstract all of our connectivity concerns. Because we're using the same
language in both the browser and the server (JavaScript), the result was a very clean
abstraction that we called fcp.js. It's dead-simple to use:

var host ="127.0.0.1";

var port = 5900;

var sock = new TCPClient(host,port);

sock.on("connected", function() {
log("connected to " + host + ":" + port);
sock.send("Hello from a browser!");

h;

sock.on("closed", function() {
log("The connection has closed :(");

h;

sock.on("data", function(msg){
log("data arrived: " + msg);

h;

sock.connect();

V8 Design
https://developers.google.com/v8/design

Hidden Classes

http://v8-io12.appspot.com/#30

V8 internally creates hidden classes for objects at runtime

Objects with the same hidden class can use the same optimized generated code

Express - Web framework for node.js
https://npmjs.org/package/express

var express = require(‘express');
var app = express();

app.get('/', function(req, res){

http://www.google.com/url?q=http%3A%2F%2Fgithub.com%2Fbgaff%2Ftcp.js&sa=D&sntz=1&usg=AFQjCNFV_YgXooFjJq8PN2YyjgHqax2hRA
https://developers.google.com/v8/design
http://v8-io12.appspot.com/#30
https://www.google.com/url?q=https%3A%2F%2Fnpmjs.org%2Fpackage%2Fexpress&sa=D&sntz=1&usg=AFQjCNE2zQeGuXgrop9qm1rBUUTPGhb3WQ

res.send('Hello World');

b;
app.listen(3000);

MVC example
https://github.com/visionmedia/express/tree/master/examples/mvc/controllers/user

Firebird Node

https://github.com/hgourvest/node-firebird

Example Application
http://mariuz.android-dev.ro/atom-reader/feedread.html

Bibliography
http://blog.zenika.com/index.php?post/2011/04/10/NodeJS
http://s3.amazonaws.com/four.livejournal/20091117/jsconf.pdf

Why node js
Pure JavaScript driver is faster than node C++ wrapper for node.js

http://www.firebirdnews.org/?p=7271

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fvisionmedia%2Fexpress%2Ftree%2Fmaster%2Fexamples%2Fmvc%2Fcontrollers%2Fuser&sa=D&sntz=1&usg=AFQjCNFyU2E645E3oMnRetLBCNsDa1QYyQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fhgourvest%2Fnode-firebird&sa=D&sntz=1&usg=AFQjCNHN-AilpZwBja6Q4v4YjMgAjAjOzg
http://www.google.com/url?q=http%3A%2F%2Fmariuz.android-dev.ro%2Fatom-reader%2Ffeedread.html&sa=D&sntz=1&usg=AFQjCNGA8aipU5hB2PT9KXgrkauTaOxNFA
http://www.google.com/url?q=http%3A%2F%2Fblog.zenika.com%2Findex.php%3Fpost%2F2011%2F04%2F10%2FNodeJS&sa=D&sntz=1&usg=AFQjCNGxUu66hqfgqN68c8balO3zoZmk1g
http://www.google.com/url?q=http%3A%2F%2Fs3.amazonaws.com%2Ffour.livejournal%2F20091117%2Fjsconf.pdf&sa=D&sntz=1&usg=AFQjCNHpGJkt8z402r5FONNyzP1jPoYD5Q
http://www.google.com/url?q=http%3A%2F%2Fwww.firebirdnews.org%2F%3Fp%3D7271&sa=D&sntz=1&usg=AFQjCNEPZfdtt33mTICGB7_v95nQACU9TQ

