
NewNew transaction’s features transaction’s features
and changes in garbage and changes in garbage
collection in Firebird 4 collection in Firebird 4

Firebird Conference 2019
Berlin, 17-19 October

Berlin 2019 Berlin 2019 Firebird 4 Firebird 43

Agenda

● Database snapshot
● Traditional
● Commits order

● Intermediate GC
● Read Committed Read Consistency

● Update conflicts handling
● Read only transactions

● Shared snapshots

Berlin 2019 Berlin 2019 Firebird 4 Firebird 44

Database snapshots: traditional

● Database snapshot allows to know state of any
transaction when snapshot created
● All transaction states are recorded at Transaction

Inventory (TIP)
● Copy of TIP created at some moment allows later to know

state of any given transaction at that moment
● If some transaction state is known as “active” in any

used snapshot, there should be guarantee that engine
could read records committed before this transaction
changed it.
● Special database marker OST used as garbage collection

threshold

Berlin 2019 Berlin 2019 Firebird 4 Firebird 45

Database snapshots: commits order

● It is enough to know order of commits to know state of
any transaction when snapshot created:
● If other tx is active (dead) in TIP, consider it as active

(dead), obviously
● If other tx is committed in TIP - we should know when it

was committed:
– before our snapshot created – consider it as committed
– after our snapshot created – consider it as active

Berlin 2019 Berlin 2019 Firebird 4 Firebird 46

Database snapshots: commits order

● Commits order:
● New global per-database counter: Commit Number (CN)

– In-memory only, no need to store in database
– Initialized when database is started
– When any transaction is committed, global Commit Number

is incremented and its value is associated with transaction
(i.e. we just defined “Transaction Commit Number“, or
Transaction CN)

Berlin 2019 Berlin 2019 Firebird 4 Firebird 47

Database snapshots: commits order

● Commits order:
● New global per-database counter: Commit Number (CN)

– Current value could be queried using new context variable
“GLOBAL_CN” in “SYSTEM” context:

SELECT RDB$GET_CONTEXT(‘SYSTEM’, ‘GLOBAL_CN’)
 FROM RDB$DATABASE

Berlin 2019 Berlin 2019 Firebird 4 Firebird 48

Database snapshots: commits order

● Possible values of transaction Commit Number
● Transaction is active:

– CN_ACTIVE = 0
● Transactions committed before database started (i.e.

older than OIT):
– CN_PREHISTORIC = 1

● Transaction is in limbo:
– CN_LIMBO = MAX_UINT64 - 1

● Dead transaction:
– CN_DEAD = MAX_UINT64 - 2

● Transactions committed while database works:
– CN_PREHISTORIC < CN < CN_DEAD

Berlin 2019 Berlin 2019 Firebird 4 Firebird 49

Database snapshots: commits order

● Database snapshot is defined as
● Value of global Commit Number at moment when

database snapshot is created, and
● Common list of all transactions with associated CN's

– Transactions older than OIT are known to be committed
thus not included in this list

Berlin 2019 Berlin 2019 Firebird 4 Firebird 410

Database snapshots: commits order

● List of “interesting” transactions with its states and
commit numbers
● Array located in shared memory

– Available for all Firebird processes
● Item index is transaction’s number
● Item value is transaction’s CN
● Whole array split on blocks of fixed size

– new setting TipCacheBlockSize in firebird.conf
– 4MB by default, fits 512K items

● Whole array keeps values between OIT and Next
– blocks dynamically allocated and released

Berlin 2019 Berlin 2019 Firebird 4 Firebird 411

Database snapshots: commits order

● Database snapshot could be created
● For every transaction

– Useful for snapshot (concurrency) transactions
● For every active statement and for every cursor

– Useful for read-committed transactions
– Allows to solve statement-level read consistency problem

Berlin 2019 Berlin 2019 Firebird 4 Firebird 412

Database snapshots: commits order

● List of all active database snapshots
● For garbage collection purposes
● List of items <attachment_id, snapshot_number>

– 16 bytes
● Allocated in shared memory
● Fixed size

– new setting SnapshotsMemSize in firebird.conf
– 64KB by default, fits more than 4000 snapshots

Berlin 2019 Berlin 2019 Firebird 4 Firebird 413

Database snapshots: commits order

Memory usage comparison

Traditional Commits Order

TIP on disk
Array of 2-bit states for

every transaction
Array of 2-bit states for

every transaction

TIP cache in memory
Array of 2-bit states for
every transaction since

OIT

Array of 64-bit Commit
Numbers of every

transaction since OIT

Private snapshot
Array of 2-bit states of
transactions between

OIT and Next

Single 64-bit Commit
Number

List of active
snapshots

Array of 16-byte items,
64KB by default

Berlin 2019 Berlin 2019 Firebird 4 Firebird 414

Database snapshots: commits order

● Record version visibility rule
● Compare CN of our snapshot (CN_SNAP) and CN of

transaction which created record version (CN_REC):

CN_REC == CN_ACTIVE,

CN_REC == CN_LIMBO

– Invisible

CN_REC == CN_DEAD

– Back out dead version (or read back version) and repeat

CN_REC > CN_SNAP

– Invisible

CN_REC <= CN_SNAP

– Visible

Berlin 2019 Berlin 2019 Firebird 4 Firebird 415

Database snapshots: commits order

● Record visibility rule: consequence
● If some snapshot CN could see some record version then all

snapshots with numbers > CN also could see same record
version

● Garbage collection rule
● If all existing snapshots could see some record version then all

it backversions could be removed, or
● If oldest active snapshot could see some record version then

all it backversions could be removed

Berlin 2019 Berlin 2019 Firebird 4 Firebird 416

Long running transactions

Sequence of actions

1 Tx 10 start

2 Tx 10 insert

3 Tx 10 commit

4 Tx 11 start

5 Tx 12 start

6 Tx 12 update

7 Tx 12 commit

8 Tx 13 start

9 Tx 13 update

10 Tx 13 commit

11 Tx 14 start

12 Tx 14 update

13 Tx 14 commit

14 Tx 15 start

TIP

Tx State

10 committed

11 active

12 committed

13 committed

14 committed

15 active Tx 15

Tx 11

Tx 13 Tx 12Tx 14

Not needed versions, can't be removed !

Tx 10

Berlin 2019 Berlin 2019 Firebird 4 Firebird 417

Long running transactions

Sequence of actions

3 Tx 10 commit, CN = 5

4 Tx 11 start

 create snapshot 5

5 Tx 12 start

6 Tx 12 update

7 Tx 12 commit, CN = 6

8 Tx 13 start

9 Tx 13 update

10 Tx 13 commit, CN = 7

11 Tx 14 start

12 Tx 14 update

13 Tx 14 commit, CN = 8

14 Tx 15 start

 create snapshot 8

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active
Snap 8

Snap 5

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8

Not needed versions, can it be removed ?

Tx 10, cn 5

Berlin 2019 Berlin 2019 Firebird 4 Firebird 418

Long running transactions

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8

Active snapshots

CN of snapshot

5

8

...

● Snapshots list is sorted
● First entry is oldest snapshot

● Which snapshot could see which record version ?
● CN_REC <= CN_SNAP

Tx 10, cn 5

Berlin 2019 Berlin 2019 Firebird 4 Firebird 419

Long running transactions

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active

Active snapshots

CN of snapshot

5

8

...

● Interesting value: oldest active snapshot which could
see given record version

● If few versions in a chain have the same (see above)
then all versions except of first one could be removed !

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8 Tx 10, cn 5

Berlin 2019 Berlin 2019 Firebird 4 Firebird 420

Long running transactions

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active

Active snapshots

CN of snapshot

5

8

...

Record versions
chain

Oldest CN could
see the version

Can be
removed

Tx 14, cn 8 8 No

Tx 13, cn 7 8 Yes

Tx 12, cn 6 8 Yes

Tx 10, cn 5 5 No

Not needed versions,
can be removed !

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8 Tx 10, cn 5

Berlin 2019 Berlin 2019 Firebird 4 Firebird 421

Intermediate record versions

Active snapshots

CN of snapshot

23

48

54

57

78

...

Visibility of record versions

Record versions
chain

Oldest CN could
see version

Could be
removed ?

Tx 345, cn 72 78 No

Tx 256, cn 65 78 Yes

Tx 287, cn 60 78 Yes

Tx 148, cn 34 48 No

Tx 124, cn 26 48 Yes

Tx 103, cn 18 23 No

CN 65 CN 60CN 72 CN 26 CN 18CN 34

Not needed versions, can be removed

Berlin 2019 Berlin 2019 Firebird 4 Firebird 422

Intermediate record versions

CN 65 CN 60CN 72 CN 26 CN 18CN 34

Not needed versions, can be removed

CN 18CN 341. Build new backversions chain

2. Update back pointer of primary version

CN 18CN 34

CN 65 CN 60CN 72 CN 26 CN 18CN 34

3. Delete old backversions

CN 65 CN 60 CN 26 CN 18CN 34

Berlin 2019 Berlin 2019 Firebird 4 Firebird 423

Intermediate record versions

● Intermediate GC cost is not zero
● Avoid concurrent Intermediate GC of the same record

● When it happens
● After UPDATE, DELETE, SELECT WITH LOCK

– record is “owned” by current active transactions
– no concurrency with other user attachments
– GCPolicy = Cooperative or Combined

● Sweep, background GC thread
– trying to avoid concurrency with user attachments

● only if primary record version is committed
● only if traditional GC is not possible (tx > OST)

Berlin 2019 Berlin 2019 Firebird 4 Firebird 424

Transactions

● Concurrency and Consistency isolation modes now
uses private database snapshot, based on new “Commit
Order” feature
● No more private copies of TIP
● Private snapshot

– created - when transaction started
– released – when transaction finished
– Current value could be queried using new context variable

“SNAPSHOT_NUMBER” in “SYSTEM” context

Berlin 2019 Berlin 2019 Firebird 4 Firebird 425

Transactions

● New sub-level for Read Committed transactions:
Read Committed Read Consistency

● Allows to solve problem with non-consistent reads at the
statement level

● Uses private database snapshot while statement
executed

● Similar to concurrency transactions but for the single
statement

Berlin 2019 Berlin 2019 Firebird 4 Firebird 426

Transactions

● Read Committed Read Consistency
● Create private database snapshot when statement

started execution (cursor opened)
● Release snapshot when statement execution finished

(cursor fetched to eof or closed)
● Same snapshot is used for all called sub-statements,

including triggers, stored procedures, dynamic statements
(in the same transaction context)

● Autonomous transaction uses own private snapshot

Berlin 2019 Berlin 2019 Firebird 4 Firebird 427

Update conflicts

● How Read Consistency interacts with active concurrent
writers
● Reader <-> Writer
● Writer <-> Writer

Berlin 2019 Berlin 2019 Firebird 4 Firebird 428

Update conflicts

● When Read Consistency transaction read record,
updated by concurrent active transaction
● No sense to wait for commit\rollback of concurrent

transaction – our snapshot not allows us to detect it
● Read backversion, if it is exists
● Similar to Record Version transactions

Berlin 2019 Berlin 2019 Firebird 4 Firebird 429

Update conflicts

● When Read Consistency transaction going to update
record, updated by concurrent active transaction
● Update conflict !

Berlin 2019 Berlin 2019 Firebird 4 Firebird 430

Update conflict

● Traditional handling of update conflicts by applications
● Try to update record
● If conflict happens

– Rollback work
– Start new transaction
– Repeat from start

Berlin 2019 Berlin 2019 Firebird 4 Firebird 431

Update conflict

● Restart request algorithm
● Try to update record
● If conflict happens

– Wait for commit\rollback of concurrent transaction
● On wait timeout return update conflict error

– If concurrent is rolled back
● Remove dead record version and try to update same record

again
– If concurrent is committed

● Undo all actions of current statement
● Release statement snapshot
● Create new statement snapshot
● Repeat from start

Berlin 2019 Berlin 2019 Firebird 4 Firebird 432

Update conflict

● Restart request algorithm
● More efficient than application-level restart

– No need to restart transaction
– Save network round-trips

● Number of restarts is limited by hard coded value (10)
● Could have some side effects

– Triggers are fired multiply times
● Not applied if statement already returns records to the

client application before update conflict happens

Berlin 2019 Berlin 2019 Firebird 4 Firebird 433

Update conflict

● Restart request algorithm
● Does not work when there is big contention on the same

record !

Update conflict

● Better handling of update conflicts by applications
● Try to SELECT WITH LOCK
● If conflict happens

– Rollback work
– Start new transaction
– Repeat from start

● Update record

Berlin 2019 Berlin 2019 Firebird 4 Firebird 435

Update conflict

● New restart request algorithm
● Try to update record
● If conflict happens

– … same actions ...
– If concurrent is committed

● Undo all actions of current statement, but
– Leave write locks on all changed records, including conflicted

one
– Same as SELECT WITH LOCK

● Release statement snapshot
● Create new statement snapshot
● Repeat from start

Berlin 2019 Berlin 2019 Firebird 4 Firebird 436

Update conflict

● New restart request algorithm
● Code exists as pull request and is not merged into master

branch yet
● Code is currently evaluated and tested by team
● So far results is good

Berlin 2019 Berlin 2019 Firebird 4 Firebird 437

Transactions

● Read Committed Read Only
● Read Consistency transactions still committed at start,

but keeps own lock with own transaction number at its
data – same as any Read Committed Write transaction
– Necessary to keep statement-level snapshot stability
– Not delays garbage collection thanks to Intermediate GC

● Record Version and No Record Version transactions
– No changes, works as before

Berlin 2019 Berlin 2019 Firebird 4 Firebird 438

Read Committed Read Consistency

● Support at SQL level
● SET TRANSACTION READ COMMITTED READ

CONSISTENCY

Berlin 2019 Berlin 2019 Firebird 4 Firebird 439

Read Committed Read Consistency

● Support at SQL level
● New value (4) at

MON$TRANSACTIONS.MON$ISOLATION_MODE
– Description available in RDB$TYPES, as usual

SELECT RDB$TYPE, RDB$TYPE_NAME FROM RDB$TYPES
 WHERE RDB$FIELD_NAME = “MON$ISOLATION_MODE”;

RDB$TYPE RDB$TYPE_NAME
======== ==================================
 0 CONSISTENCY
 1 CONCURRENCY
 2 READ_COMMITTED_VERSION
 3 READ_COMMITTED_NO_VERSION
 4 READ_COMMITTED_READ_CONSISTENCY

Berlin 2019 Berlin 2019 Firebird 4 Firebird 440

Read Committed Read Consistency

● Support at API level
● New TPB tag

– isc_tpb_read_consistency
● Sample TPB

– isc_tpb_read_committed,
isc_tpb_read_consistency, isc_tpb_write

Berlin 2019 Berlin 2019 Firebird 4 Firebird 441

Read Committed Read Consistency

● New per-database configuration setting
● ReadConsistency

● ReadConsistency = 1 (default)
● Force engine to make any read committed transaction

mode to be read committed read consistency
● For brave developers who want to avoid inconsistencies

once and forever ;)
● ReadConsistency = 0

● Allows to use all three kind of read committed mode with
no limitations

Berlin 2019 Berlin 2019 Firebird 4 Firebird 442

Shared snapshots

● It is easy now to implement snapshots sharing
● Allows for many independent transactions to see the

same stable data set
– Concurrency transactions, of course

● Useful to handle some big task by parallel connections

Berlin 2019 Berlin 2019 Firebird 4 Firebird 443

Shared snapshots

● Snapshots sharing
● Start some concurrency transaction
● Query its snapshot number

– RDB$GET_CONTEXT(‘SYSTEM’, ‘SNAPSHOT_NUMBER’), or
– isc_transaction_info(… fb_info_tra_snapshot_number …)

● Start new concurrency transaction(s) using existing
snapshot number
– SET TRANSACTION SNAPSHOT AT NUMBER <number>, or
– new TPB tag

isc_tpb_at_snapshot_number, <length>, <number>

Berlin 2019 Berlin 2019 Firebird 4 Firebird 444

Summary

● Statement-level read consistency problem is solved
● Long running transactions not blocks garbage collection
● Attempt to handle update conflicts efficiently and

automatically
● Very easy way to share same snapshot by many

independent transactions

Questions ?Questions ?

Firebird official web site

Firebird tracker

THANK YOU FOR ATTENTIONTHANK YOU FOR ATTENTION

hvlad@users.sf.net

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/
mailto:hvlad@users.sf.net?subject=6th%20Firebird%20Developers%20Day

	Slide 1
	Firebird Conference 2019 Berlin, 17-19 October
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

