New transaction’s features
and changes Iin garbage
collection in Firebird 4

d

Firebird Conference 2019

Berlin, 17-19 October

@ 1BPhoenix IBSurgeon

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

W] Moscow F
EXCHANGE
e

-
B BREDSOFT

Fast Reports

Reporting must be fast!

Agenda

* Database snapshot
* Traditional
« Commits order

* Intermediate GC

Read Committed Read Consistency
* Update conflicts handling

* Read only transactions

 Shared snapshots

3 Berlin 2019 Firebird 4

4

Database snapshots: traditional

* Database snapshot allows to know state of any
transaction when snapshot created

* All transaction states are recorded at Transaction
Inventory (TIP)

* Copy of TIP created at some moment allows later to know
state of any given transaction at that moment

* |f some transaction state is known as “active” in any
used snapshot, there should be guarantee that engine
could read records committed before this transaction

changed it.

* Special database marker OST used as garbage collection
threshold

Berlin 2019 Firebird 4 \ w y

Database snapshots: commits order

* |t is enough to know order of commits to know state of
any transaction when snapshot created:

* |If other tx is active (dead) in TIP, consider it as active
(dead), obviously

e |f other tx is committed in TIP - we should know when it
was committed:

— before our snapshot created — consider it as committed
— after our snapshot created — consider it as active

Berlin 2019

6

Database snapshots: commits order

 Commits order:
* New global per-database counter: Commit Number (CN)

- In-memory only, no need to store in database

- Initialized when database is started

- When any transaction is committed, global Commit Number
IS incremented and its value is associated with transaction
(i.e. we just defined “Transaction Commit Number®, or

Transaction CN)

Berlin 2019 Firebird 4\

Database snapshots: commits order

e Commits order:

* New global per-database counter. Commit Number (CN)

— Current value could be queried using new context variable
‘GLOBAL CN”in “SYSTEM?” context:

SELECT RDB$GET_CONTEXT(SYSTEM’, €GLOBAL CN’)
FROM RDB$DATABASE

TN\

7 Berlin 2019 Firebird 4

8

Database snapshots: commits order

e Possible values of transaction Commit Number

Transaction is active:
- CN_ACTIVE =0

Transactions committed before database started (i.e.
older than OIT):

- CN_PREHISTORIC =1
Transaction is in limbo:
- CN_LIMBO = MAX_UINT64 - 1
Dead transaction:
- CN_DEAD = MAX_UINT64 - 2
Transactions committed while database works:
- CN_PREHISTORIC <CN <CN_DEAD

Berlin 2019 Firebird 4\

9

Database snapshots: commits order

* Database snapshot is defined as

* Value of global Commit Number at moment when
database snapshot is created, and

e Common list of all transactions with associated CN's

— Transactions older than OIT are known to be committed
thus not included in this list

Berlin 2019

Database snapshots: commits order

 List of “interesting” transactions with its states and
commit numbers

* Array located in shared memory
— Available for all Firebird processes
* |tem index is transaction’s number
* |tem value is transaction’s CN
* Whole array split on blocks of fixed size

- new setting TipCacheBlockSize in firebird.conf
- 4MB by default, fits 512K items
Whole array keeps values between OIT and Next

- blocks dynamically allocated and released

10 Berlin 2019 Firebird 4 \@

11

Database snapshots: commits order

* Database snapshot could be created

* For every transaction

— Useful for snapshot (concurrency) transactions
* For every active statement and for every cursor

- Useful for read-committed transactions
- Allows to solve statement-level read consistency problem

Berlin 2019

12

Database snapshots: commits order

 List of all active database snapshots
* For garbage collection purposes

e List of items <attachment_id, snapshot _number>
- 16 bytes
* Allocated in shared memory

 Fixed size

— new setting SnapshotsMemsSize in firebird.conf
- 64KB by default, fits more than 4000 snapshots

Berlin 2019

Database snapshots: commits order

Memory usage comparison

Traditional

Commits Order

TIP on disk

Array of 2-bit states for
every transaction

Array of 2-bit states for
every transaction

TIP cache in memory

Array of 2-bit states for
every transaction since
OIT

Array of 64-bit Commit
Numbers of every
transaction since OIT

Private shapshot

Array of 2-bit states of
transactions between
OIT and Next

Single 64-bit Commit
Number

List of active

Array of 16-byte items,

13

shapshots 64KB by default
Berlin 2019 Firebird 4

Database snapshots: commits order

* Record version visibility rule

 Compare CN of our snapshot (CN_SNAP) and CN of
transaction which created record version (CN_REC):

CN_REC == CN_ACTIVE,
CN_REC ==CN_LIMBO
- Invisible
CN_REC == CN_DEAD
- Back out dead version (or read back version) and repeat
CN_REC > CN_SNAP
- Invisible
CN_REC <= CN_SNAP
- Visible

14 Berlin 2019

Database snapshots: commits order

* Record visibility rule: consequence

* |f some snapshot CN could see some record version then all
snapshots with numbers > CN also could see same record
version

* Garbage collection rule

 If all existing snapshots could see some record version then all
it backversions could be removed, or

* |f oldest active snapshot could see some record version then
all it backversions could be removed

15 Berlin 2019 Firebird 4

Long running transactions

Sequence of actions TIP \ Oldest Snapshot
Tx 10 start
Tx 10 insert
Tx 10 commit active
Tx 11 start
Tx 12 start
Tx 12 update
Tx 12 commit active
Tx 13 start
Tx 13 update
Tx 13 commit
Tx 14 start
Tx 14 update
Tx 14 commit
Tx 15 start

s

Tx 15

[Not needed versions, can't be removed ! }

Long running transactions

Sequence of actions TIP ‘ Oldest Snapshot
Tx 10 commit, CN =5
Tx 11 start

create snapshot 5 -

Tx 12 start

Tx 12 update
Tx 12 commit, CN =6
active

Tx 13 start

Tx 13 update

Tx 13 commit, CN =7
Tx 14 start

Tx 14 update

Tx 14 commit, CN = 8
Tx 15 start [Not needed versions, can it be removed ? }

create snapshot 8

Long running transactions

TIP Active snapshots

* Snapshots list is sorted
* First entry is oldest snapshot

* Which snapshot could see which record version ?
* CN REC <=CN_SNAP

Long running transactions

Active snapshots

CN of snapshot

5

8

TIP

TX State CN
10 committed 5
11 active

12 committed 6
13 committed 7
14 committed 8
15 active

Tx14,cn8 —» Tx13,cn 7

19

Tx12,cn6 » Tx10,cn 5

* Interesting value: oldest active snapshot which could
see given record version

* |f few versions in a chain have the same (see above)
then all versions except of first one could be removed !

Berlin 2019

Firebird 4 ¥,

Long running transactions

TIP Active snapshots

Not needed versions,
can be removed !

Tx14,¢cn 8 8 No
Tx13,cn7 8 Yes
Tx12,cn 6 8 Yes
Tx10,cn5) No

Intermediate record versions

Active snapshots Visibility of record versions
o e O o7
23
48 Tx 345, cn 72 78 No
54 Tx 256, cn 65 78 Yes
57 Tx 287, cn 60 78 Yes
78 Tx 148, cn 34 48 No
Tx 124, cn 26 48 Yes
Tx 103, cn 18 23 No

[Not needed versions, can be removed }

CN 72

Intermediate record versions

CN 72

3. Delete old backversions

Berlin 2019

~ » CN65 » CN60 » CN34 » CN206 CN 18
Not needed versions, can be removed
1. Build new backversions chain | CN 34 CN 18
2. Update back pointer of primary version |
\CNGSHCN6OHCN34ACN26 CN 18
CN34 —» CN 18
CN 65 CN 60 CN 34 CN 26 CN 18

Intermediate record versions

* |Intermediate GC cost is not zero
 Avoid concurrent Intermediate GC of the same record
* When it happens

* After UPDATE, DELETE, SELECT WITH LOCK

— record is “owned” by current active transactions
— no concurrency with other user attachments
- GCPolicy = Cooperative or Combined

* Sweep, background GC thread

- trying to avoid concurrency with user attachments

 only if primary record version is committed
 only if traditional GC is not possible (tx > OST)

23 Berlin 2019 Firebird 4\

Transactions

e Concurrency and Consistency isolation modes now

uses private database snapshot, based on new “Commit
Order” feature

* No more private copies of TIP
* Private snapshot
- created - when transaction started
- released — when transaction finished

— Current value could be queried using new context variable
‘SNAPSHOT _NUMBER” in “SYSTEM” context

24 Berlin 2019 Firebird 4\

Transactions

 New sub-level for Read Committed transactions:
Read Committed Read Consistency

* Allows to solve problem with non-consistent reads at the
statement level

* Uses private database snapshot while statement
executed

» Similar to concurrency transactions but for the single
statement

=\

25 Berlin 2019 Firebird 4

Transactions

 Read Committed Read Consistency

* Create private database snapshot when statement
started execution (cursor opened)

* Release snapshot when statement execution finished
(cursor fetched to eof or closed)

e Same snapshot is used for all called sub-statements,
iIncluding triggers, stored procedures, dynamic statements
(in the same transaction context)

* Autonomous transaction uses own private snapshot

26 Berlin 2019 Firebird 4 \Q/

Update conflicts

 How Read Consistency interacts with active concurrent
writers

« Reader <-> Writer
e Writer <-> Writer

Update conflicts

 When Read Consistency transaction read record,
updated by concurrent active transaction

* No sense to wait for commit\rollback of concurrent
transaction — our snapshot not allows us to detect it

« Read backversion, if it is exists
 Similar to Record Version transactions

28 Berlin 2019

Update conflicts

 When Read Consistency transaction going to update
record, updated by concurrent active transaction

* Update conflict!

Update conflict

e Traditional handling of update conflicts by applications
* Try to update record
* |f conflict happens

- Rollback work
— Start new transaction
- Repeat from start

Update conflict

* Restart request algorithm
* Try to update record

 |f conflict happens

- Wait for commit\rollback of concurrent transaction
* On wait timeout return update conflict error
- If concurrent is rolled back

 Remove dead record version and try to update same record
again

— |f concurrent is committed
* Undo all actions of current statement
* Release statement snapshot
* Create new statement snapshot
* Repeat from start

31 Berlin 2019

Update conflict

* Restart request algorithm

* More efficient than application-level restart
— No need to restart transaction
- Save network round-trips
* Number of restarts is limited by hard coded value (10)

e Could have some side effects

— Triggers are fired multiply times

* Not applied if statement already returns records to the
client application before update conflict happens

32 Berlin 2019

Update conflict

* Restart request algorithm

* Does not work when there is big contention on the same
record !

Update conflict

» Better handling of update conflicts by applications
* Try to SELECT WITH LOCK

 |f conflict happens

- Rollback work
- Start new transaction
- Repeat from start

* Update record

Update conflict

* New restart request algorithm
* Try to update record

 |f conflict happens

- ... Same actions ...

- |f concurrent is committed

 Undo all actions of current statement, but

— Leave write locks on all changed records, including conflicted
one

- Same as SELECT WITH LOCK
* Release statement snapshot

* Create new statement snapshot
* Repeat from start

=\

P

35 Berlin 2019 Firebird 4

Update conflict

* New restart request algorithm

* Code exists as pull request and is not merged into master
branch yet

* Code is currently evaluated and tested by team
* So far results is good

36 Berlin 2019 Firebird 4

Transactions

 Read Committed Read Only

 Read Consistency transactions still committed at start,
but keeps own lock with own transaction number at its
data — same as any Read Committed Write transaction

- Necessary to keep statement-level snapshot stability
— Not delays garbage collection thanks to Intermediate GC

e Record Version and No Record Version transactions
- No changes, works as before

37 Berlin 2019 Firebird 4\

Read Committed Read Consistency

* Support at SQL level

* SET TRANSACTION READ COMMITTED READ
CONSISTENCY

Read Committed Read Consistency

* Support at SQL level

* New value (4) at
MONS$TRANSACTIONS.MONS$ISOLATION MODE

- Description available in RDB$TYPES, as usual

SELECT RDBSTYPE, RDBSTYPE NAME FROM RDBSTYPES
WHERE RDBSFIELD NAME = “MON$SISOLATION MODE”;

RDBSTYPE RDBSTYPE NAME

CONSISTENCY

CONCURRENCY

READ COMMITTED VERSION
READ COMMITTED NO VERSION

READ COMMITTED READ CONSISTENCY

_ W INhPRER O

39 Berlin 2019

Read Committed Read Consistency

e Support at APl level
* New TPB tag
- 1sc_tpb read consistency
« Sample TPB

- isc_tpb read committed,
isc_tpb read consistency, isc_tpb write

Read Committed Read Consistency

* New per-database configuration setting
 ReadConsistency
 ReadConsistency = 1 (default)

* Force engine to make any read committed transaction
mode to be read committed read consistency

* For brave developers who want to avoid inconsistencies
once and forever ;)

 ReadConsistency =0

e Allows to use all three kind of read committed mode with
no limitations

41 Berlin 2019

Shared snapshots

* |tis easy now to implement snapshots sharing

* Allows for many independent transactions to see the
same stable data set

— Concurrency transactions, of course
* Useful to handle some big task by parallel connections

42 Berlin 2019

Shared snapshots

* Snapshots sharing
» Start some concurrency transaction

* Query its snapshot number
— RDB$GET_CONTEXT(‘SYSTEM’, €SNAPSHOT NUMBER’), or
- isc_transaction_info(... fb_info tra snapshot number ...)

» Start new concurrency transaction(s) using existing
snapshot number

— SET TRANSACTION SNAPSHOT AT NUMBER <number>, or
- new TPB tag
iIsc_tpb at snapshot number, <length>, <number>

o\
£ Berlin 2019 Firebird 4\

Summary

e Statement-level read consistency problem is solved
* Long running transactions not blocks garbage collection

Attempt to handle update conflicts efficiently and
automatically

* Very easy way to share same snapshot by many
iIndependent transactions

44 Berlin 2019

THANK YOU FOR ATTENTION

Questions ?

Firebird official web site

Firebird tracker

hvlad@users.sf.net

d

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/
mailto:hvlad@users.sf.net?subject=6th%20Firebird%20Developers%20Day

	Slide 1
	Firebird Conference 2019 Berlin, 17-19 October
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

