
Managing recursive,

tree-like data structures

with Firebird

Frank Ingermann

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Welcome to this session !

…say Sparkies I and III

2

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

This session is...

a piece of cake!

about

3

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Session overview

• Short intro to Trees in DBs

• Part 1: Recursive StoredProcs

• Part 2: Nested Sets

• Part 3: Recursive CTEs

• Part 4: „real-world“ examples

4

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

What is a tree?

• It has a single
Root

• It has forks or
branches (Nodes)

• Branches end up
in Leafs
(most of the time…)

 5

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

What is a tree?

• It has a single
Root

• It has forks or
branches (Nodes)

• Branches end up
in Leafs
(most of the time…)

 6

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Tree terms: Root, Nodes, Leafs

• ROOT node

– „upper end“, has no parent node

• NODE(s)

– Can have 0..1 PARENT node

– Can have 0..n CHILD nodes

• LEAF node(s)

– A node with no child nodes („lower end“)

• Leafs and nodes can have siblings
(same parent node = „brothers/sisters“)

Root node

Node

Leaf Leaf

7

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Relations of nodes in trees
• Owner or Containing relation

e.g. File System:
– each file is „owned“ by the directory it‘s in

– each file can only be in one directory

– deleting the directory deletes all files in it

• Referencing relation (links)
e.g. Recipe Database:
– each recipe can reference 0..n sub-recipes

– One sub-recipe can be referenced by many master recipes

– deleting a master recipe will not delete its sub-recipes

• A node can reference a node in another tree

11

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Tree types

• „homogeneous“ trees:

 all nodes: same type

(SQL: all node data comes from one table)

• „heterogeneous“ trees:

 nodes can have different data- or record types

(SQL: data can come from various tables)

12

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

NODE

Strategies for storing trees
• Store a Parent ref. (PK/ID) in each node/leaf

– Classic approach for N-trees (each child knows it‘s parent)

– „unlimited“ number of children for each parent

• Store all Child refs (PKs) in each parent node
– Limited number of children (one field for each Child ref.)

– good for binary search trees, B-trees

• Store relations of nodes in a separate table
– Most flexible, but requires JOINs in each SELECT

– allows „heterogeneous“ trees

– separates STRUCTURE from CONTENT (!!!)

• Store „hints for traversal“ in nodes
– Does not use PKs or IDs at all (!) -> nested sets

CHILD

PARENT

L R

13

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Retrieving Trees from a DB

• Client-Side recursion

– SELECT parent node

• SELECT its child nodes one by one
– For each child node: SELECT its child nodes one by one…

» For each child node: SELECT its child nodes one by one…

• Server-side recursion

– Recursive Stored Procedures

– Recursive CTEs

– entire tree is returned by a single statement

• „Neither-side“ recursion: Nested Sets

14

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Pros of Client-Side recursion

• Client has full control

–What and How is traversed

–When to stop traversal

–Can change the „What and How“ and
„When to stop“ anytime during traversal

15

like using a debugger in single-step mode

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Why we don‘t want client-side rec.:

• Many Prepares on Server side
(calculating plans etc. costs Server time)

• Many round-trips across the network
(each TO-AND-FRO takes time!)

• Can not retrieve tree structures as simple,
„flat“ result sets in „one go“

 (client cares about CONTENT, server about STRUCTURE)

a) SLOW b) EXPENSIVE

16

usually

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Part 1

Recursive

Stored

Procedures

17

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Stored Procedures

• Can call other Stored Procedures
 (including themselves)

• „Direct“ recursion:
 a procedure directly calls itself

• „Indirect“ recursion:
 procedure A calls procedure B
 procedure B recursively calls A

18

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Traversing trees with Selectable SPs

Recursive Top-Down SP outline:

• SELECT parent node‘s data, SUSPEND

• FOR SELECT <each child node of parent>:

– FOR SELECT from „self“ SP with the
current child as the new parent node, SUSPEND

19

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Recursive SPs: Pros and Cons
• Pros:

– Recursion on Server side, few round-trips

– PRETTY FAST (pre-compiled to BLR)

– Can handle all sorts of trees in all sorts of ways

– Full access to all PSQL features (!)

• Cons:

– Unflexible (part of the DB‘s metadata!)

– Client has little control and no „insight“
 (a SP is like a „black box, set in concrete“)

– Can be hard to maintain/change, need GRANTs

20

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Part 2

Nested Sets
21

Take some sets…

…and another set…

-> „S1“

-> „S2“

…then nest S1 into S2…

…then, what do you get?

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Nested Sets: Intro

Earth

America

U.S.A.

Canada

Europe

same data as Nested Sets: „classical“ tree:

Earth

America
Europe

Canada U.S.A.

Nested Sets are all about
Containment !

…and NO, this slide is NOT about fried eggs!

22

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Nested Sets: different views

Earth

America

U.S.A.Canada

Europe

Earth

America
Europe

Canada U.S.A.

Earth

America

Europe

Canada U.S.A.

1 2 3 4 5 6 7 8 9 10

Earth
America Europe

U.S.A.Canada

1 2 3 4 5 6 7 8 9 10

23

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Nested Sets: L and R values

Earth

America

U.S.A.Canada

Europe

1 10

2 7

3 4 5 6

8 9

Earth
America Europe

U.S.A.Canada

1 2 3 4 5 6 7 8 9 10

L R

L R L R

L R L R

24

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Nested Sets: Rules for L and R

• L value of ROOT == 1 (ex def.)

• L < R (for all nodes)

• L of each parent node < L of all it‘s children

• R of each parent node > R of all it‘s children

• L == R – 1 for all Leaf nodes if R=L+1: it has no childs!

• Number of Child nodes == (R – L - 1) / 2

Earth

America

U.S.A.Canada

Europe

1 10

2 7

3 4 5 6

8 9

25

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Nested Sets: Storage in DB

Earth

America

U.S.A.

Canada

Europe

1 10

2 7

3 4

5 6

8 9

Name L R (R - L - 1) / 2

4

2

0

0

0

26

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

INSERTs in Nested Sets

Earth

America

U.S.A.Canada

Europe

1 12

2 7

3 4 5 6

8 11

Germany

9 10

Earth

America

U.S.A.Canada

Europe

1 10

2 7

3 4 5 6

8 9

27

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)
30

• Pros:

– Good for static (read-only),
 Owner/Containing type trees

– VERY FAST, non-recursive traversal (index on „L“)

– Can be mixed with „classic“ trees

• Cons:

– UPDATEs/INSERTs/DELETEs are VERY „expensive“

– No direct links between child and parent nodes

• Depends:

 Predefined order of child nodes (Con? Pro?)

Nested Sets: Pros and Cons

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Part 3

Recursive

CTEs
(Common Table Expressions)

31

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Recursive CTEs: Pros and Cons

• Cons:

–Client must know and understand
 tree structure

–No full PSQL (just part of a SELECT)

–No simple way to control the
order of traversal (yet)

32

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Recursive CTEs: Pros and Cons

• Pros:
– Server-side recursion

– fast, few round-trips

– very flexible & dynamic

– transparent to client

– elegant + relatively easy (once you get it ;-)

– no Metadata changes

– no GRANT…TO PROCEDUREs required

– Can be used in Stored Procedures

just about everything else:

33

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

„normal“ CTEs: Intro

• WITH <alias> AS (<select_expression>) --„preamble“
SELECT <…>
 FROM <alias> -- „main statement“

• WITH <alias1> AS (<select_expression1>),
 <alias2> AS (<select_expression2>)
SELECT <…>
 FROM <alias1>
 JOIN <alias2> ON <join_condition>

multiple CTEs are „chainable“ in one SELECT

This is one
SELECT
you can

send from
a client

„ad hoc“

34

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Recursive CTEs: Intro

• a CTE is an „inline VIEW“ inside a SELECT

• a recursive CTE („view“) can reference itself

Recursive CTEs can

recursively traverse tree structures with a

single „on the fly“ SELECT statement

 from the client very efficiently !
35

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Recursive CTEs: basic structure

WITH RECURSIVE <cte_alias> AS (
 SELECT <parent data> -- root node’s data

 UNION ALL

 SELECT <child data> -- children’s data
 JOIN <cte_alias> ON <parent_link>
) -- DO // for the Delphians

SELECT * FROM <cte_alias>

36

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Traversing trees with recursive CTEs

WITH RECURSIVE fs_tree AS (

 SELECT id, filename FROM filesys

 WHERE id_master = 0 -- condition for ROOT node

 UNION ALL

 SELECT ch.id, ch.filename FROM filesys ch -- childs

 JOIN fs_tree pa ON ch.id_master = pa.id)

 -- ^^^ parent_link: p_l ^^^

SELECT * FROM fs_tree

37

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Server processing of rec. CTEs I

WITH RECURSIVE <x> AS

(SELECT <parent> -- PA

 UNION ALL

 SELECT <child> -- CH

 JOIN <x> ON P_L)

SELECT * FROM <x>

„Analyse > Transform > PREPARE“:

• Transform PA (…)

• Transform CH: turn P_L into Params

(„un-recurse“/„flatten“ child select)

JOIN <x> ON CH.ID_Parent = PA.ID

• Prepare transformed PA

• Prepare transformed CH

What you send: Server Phase I: Preparation

WHERE CH.ID_Parent = :ID -- param

38

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Server processing of rec. CTEs II

1. Execute PA („anchor query“)

2. For each result row RR: SEND TO CLIENT

3. PUSH result set RS to stack

3.1 Execute CH with current
 params from RR -> RS2

3.2 For each result row RR2 (if any):
 call 2. with RR2 as params

4. POP RS from stack, goto 2. with next RS row

What you get back (Server Phase II: Execution)
R

ecu
rsio

n
,

o
n

e level d
o

w
n

Lo
o

p
 (sam

e
 level)

Back up one level, „unwind“

39

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Recursive results -> „flat“ result set
this slide © Vladyslav Khorsun

- thanks, Vlad ! 

40

A

Ch

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) 41

Ordering Children in recursive CTEs

• The Problem:

–Because of the UNION,
you can‘t have an ORDER BY clause
in the CTE‘s „Child“ SELECT

–Since you can not control
the order of child traversal,
you MUST consider it to be random (!)

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) 42

Ordering Children in recursive CTEs

• Solution A (Fb <x>)

 Use DEPTH FIRST BY <columns> clause

–Really ORDERs the Child select in the
UNION (just using a different syntax)

– already returns the tree in the “right” order
during traversal,
no ordering of result set needed

(but: not yet implemented )

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) 43

Ordering Children in recursive CTEs

• „Solution“ B (Fb 3) :
Use a Window Function:
with rcte as (
 select … from … UNION ALL select …,
 RANK() OVER(PARTITION BY PARENT_ID
 ORDER BY <sort col>)

• Looks clever!
Only drawback: it doesn‘t work…(*)
and if/when it does, that‘s coincidence!
(*)NOTE: as of build 3.0.0.29631 this WILL actually work in Fb3 – Adriano has just

committed a bugfix related to window functions in recursive CTEs. Thanks Adriano!

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) 44

Ordering Children in recursive CTEs

• Solution C:

 Use a SELECTABLE SP as Child Select
• Returns the Childs in a defined order (!)

• Unflexible for the client:

• ORDER is pre-defined in the SP…

• Columns are fixed…

• …see all other CONs of Recursive SPs!

• Very clumsy workaround

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) 45

Ordering Children in recursive CTEs

• Solution D:

 Construct a sort path
• Works (kind of) ok with Chars (of limited length)

• Works not so well with numerical data

• No index usage

• orders result set (after traversal)

• can take LOTS of reads

• also a clumsy workaround

• But: it works, and it‘s reliable!

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Part 4

„Real world“

CTE Examples

46

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

„Fun“ with recursive CTEs

Let‘s bake some

marble cake!

Vanilla
cake mixture

Chocolate
cake mixture

Chocolate
icing

47

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Shugga baby!

• This cake
has 5 sub-recipes

• Each has a different
% of sugar

• Q1: What % of sugar is in the entire cake ?

• Q2: how much sugar,… do i need for 5 kg?

• Q3: How much cake can i bake,
 if i only have <x> [g] of sugar ??

49

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

that‘s about it…

Questions ?

Frank Ingermann
frank.ingermann@klar-partner.de

Thank you for your attention!

50

Want some cake ???



