Managing recursive,
tree-like data structures
with Firebird

@ Frank Ingermann —

Supporting
Firebird development

Welcome to this session !

...say Sparkies | and Il
‘ Firebird Conﬁerence 2011i Luxembourgi' Magag"gg tree structures W"tg ﬁirebird gFrank Ingermanna ‘

This session is
about

Session overview
* Short intro to Trees in DBs
* Part 1: Recursive StoredProcs
* Part 2: Nested Sets
* Part 3: Recursive CTEs

* Part 4: ,real-world“ examples

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

What is a tree?

* |t has a single
Root

* |t has forks or
branches (Nodes

* Branches end up

in Leafs
(most of the time...)

What is a tree?

* |t has a single
Root

* |t has forks or
branches (Nodes)

* Branches end up

in Leafs
(most of the time...)

irebird Co ce 2011, Luxembourg: Managi ree structures with Firebird (Fra erma

Tree terms: Root, Nodes, Leafs

ROOT node
Root node

— ,upper end®, has no parent node /
NODE(s) o
— Can have 0..1 PARENT node /\
— Can have 0..n CHILD nodes

Leaf Leaf
LEAF node(s)

— A node with no child nodes (,,lower end”)

Leafs and nodes can have siblings
(same parent node =, brothers/sisters”)

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

l

Relations of nodes in trees

* Owner or Containing relation

e.g. File System:

— each file is ,,owned” by the directory it's in

— each file can only be in one directory

— deleting the directory deletes all files in it

* Referencing relation (links) -

e.g. Recipe Database:

— each recipe can reference 0..n sub-recipes i
— One sub-recipe can be referenced by many master recipes
— deleting a master recipe will not delete its sub-recipes

* A node can reference a node in another tree

[Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Tree types

e ,homogeneous” trees:
all nodes: same type

(SQL: all node data comes from one table)

e ,heterogeneous” trees:
nodes can have different data- or record types

(SQL: data can come from various tables)

[Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Strategies for storing trees

o .
chib | * Store a Parent ref. (PK/ID) in each node/leaf
— Classic approach for N-trees (each child knows it’s parent)
— ,unlimited” number of children for each parent
PARENT |« Store all Child refs (PKs) in each parent node

— Limited number of children (one field for each Child ref.)
— good for binary search trees, B-trees

=

@ Store relations of nodes in a separate table

— Most flexible, but requires JOINs in each SELECT
a Q — allows , heterogeneous” trees
— separates STRUCTURE from CONTENT (!!!)

=
O
O
m
o

Store , hints for traversal” in nodes

— Does not use PKs or IDs at all (!) -> nested sets

[Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Retrieving Trees from a DB

e Client-Side recursion

— SELECT parent node

e SELECT its child nodes one by one

— For each child node: SELECT its child nodes one by one...
» For each child node: SELECT its child nodes one by one...

* Server-side recursion
— Recursive Stored Procedures
— Recursive CTEs
— entire tree is returned by a single statement

* Neither-side” recursion: Nested Sets

[Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Pros of Client-Side recursion

 Client has full control
—What and How is traversed
—When to stop traversal

— Can change the ,,What and How"“ and
»When to stop” anytime during traversal

like using a debugger in single-step mode

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

usually

Why we don‘t want client-side rec.:

a) SLOW b) EXPENSIVE

* Many Prepares on Server side
(calculating plans etc. costs Server time)

* Many round-trips across the network
(each TO-AND-FRO takes time!)

* Can not retrieve tree structures as simple,
»Hat“ result sets in ,,one go”
(client cares about CONTENT, server about STRUCTURE)

irebird Conference 20 uxembourg: Managing tree es with Firebird (Frank Ingermann

Firebird Conference 2011, Luxe

Part 1

Recursive
Stored
Procedures

mbourg: Managing tree structures with Firebird (Frank Ingermann)]

Stored Procedures

e Can call other Stored Procedures
(including themselves)

* ,Direct” recursion:
a procedure directly calls itself

* Indirect” recursion:

procedure A calls procedure B
procedure B recursively calls A

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Traversing trees with Selectable SPs

Recursive Top-Down SP outline:
* SELECT parent node’s data, SUSPEND

* FOR SELECT <each child node of parent>:

—FOR SELECT from , self” SP with the
current child as the new parent node, SUSPEND

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Recursive SPs: Pros and Cons

* Pros:
— Recursion on Server side, few round-trips
— PRETTY FAST (pre-compiled to BLR)
— Can handle all sorts of trees in all sorts of ways
— Full access to all PSQL features (!)

e Cons:

— Unflexible (part of the DB‘s metadatal)

— Client has little control and no ,,insight”
(a SP is like a ,,black box, set in concrete”)

— Can be hard to maintain/change, need GRANTSs

| Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) ‘

Part 2

Nested Sets

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Nested Sets: Intro

assical” tree: same data as Nested Sets:
Earth

A Earth

America America
A
— Canada
— U.S.A.

—| Europe Nested Sets are all about

Containment !

...and NO, this slide is NOT about fried eggs!

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

l

Nested Sets: different views

Earth Earth
t t America
America Europe
Canada U.S.A.

America Earth

America Europe
Canada U.S.A.

123 4 5 6 7 8 9 10

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Nested Sets: L and R values

Earth
America Europe
Canada U.S.A.
Earth
123 4 5 6 7 8 9 10
1 LR 10 =
America Europe
> 2 UR7 —=» 8 LIRO9
* L A
Canada U.S.A.
3 LIR4 = 5 LR 6
L A L A

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

l

Nested Sets: Rules for L and R

Earth

1 | 10

L value of ROOT ==1 (ex def.) |
2 | 7

> 8

*

U.S.A.

.

5 | 6

L 4

L <R (for all nodes) —
> 3 | 4
L of each parent node < L of all it‘s children

R of each parent node > R of all it’s children

L==R -1 for all Leaf nodes if R=L+1: it has no childs!

Number of Child nodes==(R-L-1) / 2

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Nested Sets: Storage in DB

(R-L-1)/2

Name L R

Earth 1 10
America 2 7
Canada 3 4
U.S.A. 5 6
Europe 3 9

O O O N

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

]

INSERTs in Nested Sets

Earth
10 «—
America Europe
2 7 B> 8 9
* L A
Canada U.S.A Earth
12
3 4 6
L A L A
America Europe
2 7 8 11
L Canada U.S.A. Germany
4 > 6 9 10
L4 L 4

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Nested Sets: Pros and Cons
° Pros:

— Good for static (read-only),
Owner/Containing type trees

— VERY FAST, non-recursive traversal (index on , L")
— Can be mixed with ,,classic” trees

* Cons:
— UPDATEs/INSERTs/DELETEs are VERY ,,expensive”
— No direct links between child and parent nodes

* Depends:
— Predefined order of child nodes (Con? Pro?)

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Part 3

Recursive
CTEs

(Common Table Expressions)

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)

Recursive CTEs: Pros and Cons

e Cons:

—Client must know and understand
tree structure

—No full PSQL (just part of a SELECT)

—No simple way to control the
order of traversal (yet)

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Recursive CTEs: Pros and Cons

* Pros: just about everything else:

— Server-side recursion

— fast, few round-trips

— very flexible & dynamic

— transparent to client

— elegant + relatively easy (once you get it ;-)
— no Metadata changes

— no GRANT...TO PROCEDUREs required
— Can be used in Stored Procedures

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

,hormal“ CTEs: Intro

* WITH <alias1> AS (<select_expression1>), | Thisis one
<alias2> AS (<select_expression2>) SELECT
SELECT <...> you can
. send from
FROM <alias1>

_ o o a client
JOIN <alias2> ON <join_condition> _ad hoc”

Recursive CTEs: Intro

Recursive CTEs can

recursively traverse tree structures with a
single ,,on the fly“ SELECT statement I
from the client very efficiently .

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Recursive CTEs: basic structure

WITH RECURSIVE <cte_alias> AS (
SELECT <parent data> -- root node’s data

UNION ALL

SELECT <child data> -- children’s data
JOIN <cte_alias> ON <parent_link>
) --DO // for the Delphians

SELECT * FROM <cte alias>

Traversing trees with recursive CTEs

WITH RECURSIVE fs tree AS (
SELECT(id)filename FROM filesys
WHERE id_Yaster = 0 -- condition for ROOT node

UNION ALL

SELECT ch.id, ch.filename FRONNlesys ch -- childs
JOIN fs_tree pa ON ch.id_master =

-- AN parent_liz: p_| AMA

SELECT * FROM fs_tree

Server processing of rec. CTEs |

What you send: Server Phase I: Preparation

WITH RECURSIVE <x> AS
LAnalyse > Transform > PREPARE":

(SELECT <parent> -- PA Transform PA (...)
UNION ALL Transform CH: turn P_L into Params

,un-recurse”/, flatten” child select)

SELECT <child> --CH
—JOIN-<-ON-CHAD—Perrent=PA 1D
JOIN <x>ON P _L)

WHERE CH.ID_Parent =:ID -- param
SELECT * FROM <x> * Prepare transformed PA

* Prepare transformed CH

| Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) ‘

Server processing of rec. CTEs I

What you get back (Server Phase Il: Execution)

1. Execute PA (,,anchor query®)
2. For each result row RR: SEND TO CLIENT

3. PUSH result set RS to stack > \ -
L 3.1 Execute CH with current © § §
params from RR -> RS2 % % A

3.2 For each result row RR2 (if any): % g i

&

call 2. with RR2 as params
r Back up one level, ,unwind” /
4. POP RS from stack, goto 2. with next RS row

irebird Co ce 2011, Luxembourg: Managi ree structures with Firebird (Fra erma

Recursive results -> , flat” result set

this slide © Vladyslav Khorsun
N\ - thanks, Viad ! ©

000 Corporate Headquarters
— \ 000 Corporate Headquarters
100 000 Sales and Marketing 100 000 Sales and Marketing
900 000 Finance 130 100 Field Office: East Coast
\% 140 100 Field Office: Canada
110 100 Pacific Rim Headquarters
180 100 Marketing
130 100 Field Office: East Coast 120 100 European Headquarters
140 100 Field Office: Canada 121 120 Field Office: Switzerland
110 100 Pacific Rim Headquarters 123 120 Field Office: France
120 100 European Headquarters 125 120 Field Office: Italy
* 600 000 Engineering
620 600 Software Products Div.
621 620 Software Development
622 620 Quality Assurance
623 620 Customer Support
670 600 Consumer Electronics Div.
671 670 Research and Development
121 120 Field Office: Switzerland 672 670 Customer Services
123 120 Field Office: France 900 000 Finance

125 120 Field Office: Italy /

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Ordering Children in recursive CTEs

* The Problem:

—Because of the UNION,
you can‘t have an ORDER BY clause
in the CTE's ,,Child“ SELECT

—Since you can not control
the order of child traversal,
you MUST consider it to be random (!)

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Ordering Children in recursive CTEs

* Solution A (Fb <x>)

Use DEPTH FIRST BY <columns> clause

— Really ORDERs the Child select in the
UNION (just using a different syntax)

—already returns the tree in the “right” order
during traversal,
no ordering of result set needed

(but: not yet implemented ®)

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Ordering Children in recursive CTEs

e ,Solution“ B (Fb 3):

Use a Window Function:

with rcte as (
select ... from ... UNION ALL select...,
RANK() OVER(PARTITION BY PARENT ID
ORDER BY <sort col>)

* Looks clever!
Only drawback: it doesn‘t work...(*)
and if/when it does, that’s coincidence!
(*)NOTE: as of build 3.0.0.29631 this WILL actually work in Fb3 — Adriano has just

committed a bugfix related to window functions in recursive CTEs. Thanks Adriano!

[Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Ordering Children in recursive CTEs

e Solution C:

Use a SELECTABLE SP as Child Select

e Returns the Childs in a defined order (!)
* Unflexible for the client:

* ORDER is pre-defined in the SP...

* Columns are fixed...

e ...see all other CONs of Recursive SPs!

* Very clumsy workaround

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Ordering Children in recursive CTEs
* Solution D:

Construct a sort path
* Works (kind of) Ok with Chars (of limited length)
* Works not so well with numerical data
* No index usage
 orders result set (after traversal)
* can take LOTS of reads
* also a clumsy workaround
e But: it works, and it’s reliable!

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann)]

Part 4

,Real world“
CTE Examples

Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) l

,Fun’ with recursive CTEs

Let’s bake some
marble cake!

Chocolate
icing \

Chocolate
cake mixture

Vanilla
cake mixture

| Firebird Conference 2011, Luxembourg: Managing tree structures with Firebird (Frank Ingermann) I

Shugga baby!

This cake
has 5 sub-recipes

Each has a different
% of sugar

Q1: What % of sugar is in the entire cake ?
Q2: how much sugar,... do i need for 5 kg?

Q3: How much cake can i bake,
if i only have <x> [g] of sugar ??

that’s about it...

Want some cake ???

