Character Sets and Unicode in Firebird

Stefan Heymann

www.consic.de
heymann@consic.de

After a short introduction to the world of Character Sets and Unicode, this session will show you how to bring it all to work in Firebird. You will learn what all those character sets and collations are and how you can properly use them to get the right characters into the database and onto your screen.
Topics

• Characters
• Character Sets
• Unicode
• Firebird
• Examples
Characters
Glyphs vs. Characters

Latin uppercase A
Glyph, Character, Character Set

• A **Glyph** is something you can see with your eyes
• A **Character** is an abstract concept
• Rendering of characters as **Glyphs** is the job of the rendering machine (Postscript, GDI, TrueType, Web Browser, etc.)
• We mostly care for processing the characters
• A **Character Set** assigns a number to a character:
 Uppercase A = 65
 Uppercase B = 66
 etc.
Glyphs

- Not all languages display glyphs as a string of left-to-right, contiguous rectangles
- Right-to-left (Arabic, Hebrew), top-to-bottom (Japanese, Chinese)
- Several characters can „melt“ into one glyph

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>ن</th>
<th>ل</th>
<th>لا</th>
<th>غ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input characters</td>
<td>غ</td>
<td>ن</td>
<td>ل</td>
<td>ل</td>
</tr>
<tr>
<td>Encoded characters (byte values in hex)</td>
<td>0644</td>
<td>0627</td>
<td>0644</td>
<td>0627</td>
</tr>
<tr>
<td>Display</td>
<td>لاالاغ</td>
<td>غ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Character Sets
ASCII: The Mother of Character Sets

• American Standard Code for Information Interchange: ASCII, ISO 646

• 7 bits, characters ranging from 0 to 127 (00..7F)

• 32 invisible control characters (NUL, TAB, CR, LF, FF, BEL, ESC, …)

• A..Z, a..z, Digits 0..9, Punctuation (;.-?)

• Optimized for English

• Only Latin characters, no accents, no umlauts

• MIME code: US-ASCII
ASCII for Europe

• Language specific characters get a new assignment
• [ä ö ü] = Ü
• Problem: Printer and screen must have same setting
• Impossible to mix French and German in one text:
 „Amélie knackt gerne die Kruste von Crème Brulé mit dem Löffel“
• Died together with DOS
Use the 8th Bit

• 128 new characters: 128 to 255 (00..FF)
• A lot of 8-Bit character sets have evolved
 • ISO 8859-x = ASCII + 160..255
 • ISO 8859-1 = Latin-1 (Western European languages)
 • Windows 1252 = ISO 8859-1 + 128..159
 • etc.
ISO 8859

- Characters 0..127 identical to ASCII
- 128..159 undefined control characters
- 160..255 individually assigned
ISO 8859-1 / Latin-1

<table>
<thead>
<tr>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>ø</td>
<td>í</td>
<td>Î</td>
<td>Ñ</td>
<td>¥</td>
<td>!</td>
<td>?</td>
<td>€</td>
<td>©</td>
<td>®</td>
<td>¯</td>
<td>Ç</td>
<td>Ð</td>
<td>Å</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>B8</th>
<th>B9</th>
<th>BA</th>
<th>BB</th>
<th>BC</th>
<th>BD</th>
<th>BE</th>
<th>BF</th>
</tr>
</thead>
<tbody>
<tr>
<td>±</td>
<td>2</td>
<td>3</td>
<td>¼</td>
<td>µ</td>
<td>½</td>
<td>·</td>
<td>£</td>
<td>¹</td>
<td>0</td>
<td>]</td>
<td>{</td>
<td>}</td>
<td>°</td>
<td>±</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>CA</th>
<th>CB</th>
<th>CC</th>
<th>CD</th>
<th>CE</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>À</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D0</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>DA</th>
<th>DB</th>
<th>DC</th>
<th>DD</th>
<th>DE</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ð</td>
<td>Ñ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E0</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
<th>EA</th>
<th>EB</th>
<th>EC</th>
<th>ED</th>
<th>EE</th>
<th>EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>â</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F0</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>FA</th>
<th>FB</th>
<th>FC</th>
<th>FD</th>
<th>FE</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ð</td>
<td></td>
</tr>
</tbody>
</table>

Afrikaans, Albanese, Basque, Danish, German, **English**, Faroese, Finnish, French, Icelandic, Italian, Catalan, Dutch, Norwegian, Portuguese, Rhaeto-Romance, Scottish Gaelic, Schwedish, Spanish, Suaheli

Large parts of the world – wide-spread use
ISO 8859-2 / Latin-2

<table>
<thead>
<tr>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ł</td>
<td>Ą</td>
<td>Ł</td>
<td>Ş</td>
<td>Ş</td>
<td>Ş</td>
<td>Ş</td>
<td>Ş</td>
<td>Ş</td>
<td>Š</td>
<td>Š</td>
<td>Š</td>
<td>Š</td>
<td>Š</td>
<td>Š</td>
</tr>
<tr>
<td>B0</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
<td>B9</td>
<td>BA</td>
<td>BB</td>
<td>BC</td>
<td>BD</td>
<td>BE</td>
<td>BF</td>
</tr>
<tr>
<td>b</td>
<td>ï</td>
<td>ï</td>
<td>ñ</td>
<td>o</td>
</tr>
<tr>
<td>C0</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>CA</td>
<td>CB</td>
<td>CC</td>
<td>CD</td>
<td>CE</td>
<td>CF</td>
</tr>
<tr>
<td>Ć</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td>DA</td>
<td>DB</td>
<td>DC</td>
<td>DD</td>
<td>DE</td>
<td>DF</td>
</tr>
<tr>
<td>D</td>
<td>N</td>
<td>Ñ</td>
<td>O</td>
<td>Ò</td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>E9</td>
<td>EA</td>
<td>EB</td>
<td>EC</td>
<td>ED</td>
<td>EE</td>
<td>EF</td>
</tr>
<tr>
<td>ñ</td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
<td>F6</td>
<td>F7</td>
<td>F8</td>
<td>F9</td>
<td>FA</td>
<td>FB</td>
<td>FC</td>
<td>FD</td>
<td>FE</td>
<td>FF</td>
</tr>
</tbody>
</table>

Central and Eastern Europe (Czech, Polish, etc.)
ISO 8859-4 / Latin-4

<table>
<thead>
<tr>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>K</td>
<td>R</td>
<td>Ñ</td>
<td>I</td>
<td>Ļ</td>
<td>S</td>
<td>Ŕ</td>
<td>Ė</td>
<td>ĺ</td>
<td>Ĺ</td>
<td>Ĺ</td>
<td>Ĺ</td>
<td>Ĺ</td>
<td>Ĺ</td>
<td>Ĺ</td>
</tr>
<tr>
<td>B0</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
<td>B9</td>
<td>BA</td>
<td>BB</td>
<td>BC</td>
<td>BD</td>
<td>BE</td>
<td>BF</td>
</tr>
<tr>
<td>a</td>
<td>r</td>
<td>i</td>
<td>ĭ</td>
<td>ĭ</td>
<td>ĭ</td>
<td>ĭ</td>
<td>ĭ</td>
<td>ĭ</td>
<td>ľ</td>
<td>ľ</td>
<td>ľ</td>
<td>ľ</td>
<td>ľ</td>
<td>ľ</td>
<td>ľ</td>
</tr>
<tr>
<td>C0</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>CA</td>
<td>CB</td>
<td>CC</td>
<td>CD</td>
<td>CE</td>
<td>CF</td>
</tr>
<tr>
<td>Č</td>
<td>Č</td>
<td>Č Č</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td>DA</td>
<td>DB</td>
<td>DC</td>
<td>DD</td>
<td>DE</td>
<td>DF</td>
</tr>
<tr>
<td>D</td>
<td>N</td>
<td>Ö</td>
</tr>
<tr>
<td>E0</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>E9</td>
<td>EA</td>
<td>EB</td>
<td>EC</td>
<td>ED</td>
<td>EE</td>
<td>EF</td>
</tr>
<tr>
<td>ā</td>
<td>ā</td>
<td>ā ā</td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
<td>F6</td>
<td>F7</td>
<td>F8</td>
<td>F9</td>
<td>FA</td>
<td>FB</td>
<td>FC</td>
<td>FD</td>
<td>FE</td>
<td>FF</td>
</tr>
<tr>
<td>ď</td>
<td>n</td>
<td>ō</td>
</tr>
</tbody>
</table>

Northern Europe, Baltic, Greenlanic, Sami
ISO 8859-5 / Cyrillic

<table>
<thead>
<tr>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Е</td>
<td>Ъ</td>
<td>Ь</td>
<td>Г</td>
<td>Е</td>
<td>С</td>
<td>И</td>
<td>І</td>
<td>Ї</td>
<td>І Ь</td>
<td>І Ь</td>
<td>Ї</td>
<td>І Ь</td>
<td>І Ь</td>
<td>Ї</td>
<td>І Ь</td>
</tr>
<tr>
<td>А</td>
<td>Б</td>
<td>В</td>
<td>Г</td>
<td>Д</td>
<td>Е</td>
<td>Ж</td>
<td>З</td>
<td>І Ь</td>
<td>І Ь</td>
<td>Ї</td>
<td>І Ь</td>
<td>І Ь</td>
<td>Ї</td>
<td>І Ь</td>
<td></td>
</tr>
<tr>
<td>Р</td>
<td>С</td>
<td>Т</td>
<td>У</td>
<td>Ф</td>
<td>Х</td>
<td>Ц</td>
<td>Ч</td>
<td>Ш</td>
<td>Ъ</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
</tr>
<tr>
<td>а</td>
<td>б</td>
<td>в</td>
<td>г</td>
<td>д</td>
<td>е</td>
<td>ж</td>
<td>з</td>
<td>і Ь</td>
<td>і Ь</td>
<td>Ї</td>
<td>і Ь</td>
<td>і Ь</td>
<td>Ї</td>
<td>і Ь</td>
<td></td>
</tr>
<tr>
<td>р</td>
<td>с</td>
<td>т</td>
<td>у</td>
<td>ф</td>
<td>х</td>
<td>ц</td>
<td>ч</td>
<td>ш</td>
<td>ъ</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
<td>Ь</td>
</tr>
</tbody>
</table>

Cyrillic (Russia, Ukraine, etc.)
More important: KOI8-R (Russian), KOI8-U (Ukrainian)
ISO 8859-9 / Latin-5

<table>
<thead>
<tr>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>🇹🇷</td>
<td></td>
</tr>
<tr>
<td>🇹🇷</td>
<td></td>
</tr>
<tr>
<td>🇹🇷</td>
<td></td>
</tr>
<tr>
<td>🇹🇷</td>
<td></td>
</tr>
<tr>
<td>🇹🇷</td>
<td></td>
</tr>
<tr>
<td>🇹🇷</td>
<td>🇹🇷</td>
<td>🇹🇷</td>
<td>🇹🇷</td>
<td>🇹📍</td>
<td></td>
</tr>
<tr>
<td>🇹📍</td>
<td></td>
</tr>
<tr>
<td>🇹📍</td>
<td></td>
</tr>
<tr>
<td>🇹📍</td>
<td></td>
</tr>
<tr>
<td>🇹📍</td>
<td></td>
</tr>
<tr>
<td>🇹📍</td>
<td></td>
</tr>
<tr>
<td>🇹📍</td>
<td></td>
</tr>
</tbody>
</table>

Turkish
Windows Character Sets („Codepages“)

- Partly congruent to ISO-8859
- Additional assignment of characters 128..159 with visible (non-control) characters
 - Hyphens n length – and m length — (vs. Dash -)
 - Typographic „quotation marks“, etc.
- Windows character sets officially registered at IANA
Microsoft Windows Codepages

- 874 Thai
- 932 Japanese
- 936 Simplified Chinese
- 949 Korean
- 950 Traditional Chinese
- 1250 Central European
- 1251 Cyrillic
- 1252 Western European
- 1253 Greek
- 1254 Turkish
- 1255 Hebrew
- 1256 Arabic
- 1257 Baltic
- 1258 Vietnamese
windows-1252

- Congruent to ISO 8859-1 (Western European languages, including English)
- Additional characters in the 128..159 range:

 € , f „ ... † ‡ † ‡ ˜ ™ š > œ ž Ÿ

 Euro sign € since 2000 (Windows 1252-2000)
Multi-Byte Character Sets MBCS

- Multiple Bytes per Character
- Eastern Asian Languages (CJK)
- String Length <> Length of character chain
- Making extraction of sub-strings more difficult
- Firebird functions:
 - **BIT_LENGTH**: length of a string in bits (!)
 - **CHAR_LENGTH/CHARACTER_LENGTH**: length of a string in characters
 - **OCTET_LENGTH**: length of a string in bytes
Unicode
Why Unicode?

- One single Character Set for all languages/scripts
- No code overlaps
- Hardware and OS independant
- Standardisation ISO 10646 (vs. ASCII = ISO 646)
Unicode

- Started with 16 Bits/Character, now 32 Bits/Char
- Ability to code 1,114,112 characters
- Currently only a fraction is used
- „Basic Multilingual Plane“ (BMP): 0..U+FFFF
 Can be encoded in 16 bits
- Current version: 6.0.0 (February 2011)
- Defines Characters, not Glyphs
- Practically equal to ISO/IEC 10646
Character Definition

- Unicode defines a numerical *Code Point* (scalar value) and an *Identifier* for every character

- \texttt{0041} LATIN CAPITAL LETTER A
- \texttt{00E4} LATIN SMALL LETTER A WITH DIAERESIS
- \texttt{0391} GREEK CAPITAL LETTER ALPHA
- \texttt{05D0} HEBREW LETTER ALEF
- \texttt{0950} DEVANAGARI OM
- \texttt{1D56C} MATHEMATICAL BOLD FRAKTUR CAPITAL A
Unicode Code Points

- Codespace: 0..10FFFF
- Usual notation is hexadecimal with preceding U+ and 4 or 5 digits
 - U+0020
 - U+0041
 - U+1D56C
Unicode Character Names

- Consisting of the uppercase letters A..Z, digits 0..9, hyphen (-) and whitespace.
- BYZANTINE MUSICAL SYMBOL LEIMMA ENOS CHRONOU
- DESERET CAPITAL LETTER OW
- BRAILLE PATTERN DOTS-1245
Unicode Coding

• Storage of Code Points in memory
• 32 Bits/Character easy but too fat
• There are several codings around:
 • 8-Bit (UTF-8, formerly called „FSS“)
 • 16-Bit (UCS-2, UTF-16)
 • 32-Bit (UCS-4, UTF-32)
 • PunyCode for international Domain names
 • „Exotic“: UTF-7, UTF-1, etc.
UCS-2

- 16 Bits per Character
- Code Area: 0000..FFFF
 = Basic Multilingual Plane (BMP)
- Characters beyond the BMP (defined since Unicode 3.1) can not be encoded
- Replaced by UTF-16
- „Unicode“ often used as a synonym for UCS-2 (which is wrong and can lead to misunderstanding)
UTF-16

• 16 Bits per Character
• All characters > FFFF must be coded as a „Surrogate Pair“ and occupy 2 consecutive 16-Bit words
• Complete Code Space can be encoded
• Difficult to calculate string length or substrings
• Used by Windows 2000 and later
• Used by Delphi 2009/2010/XE (UnicodeString type)
Endianness

- Problem with UCS-2, UTF-16: Low/High-Byte ordering
- Differentiate in UTF-16BE and UTF-16LE in metadata
- Byte Order Mark \textbf{BOM} U+FEFF
- U+FEFF set at the very beginning of each text
- U+FFFE is (and will be) an invalid code point
UCS-2 vs. UTF-16

- UTF-16 ist backwards compatible
- „Unicode“ is used as a (bad) synonym for UCS-2 or UTF-16
- WideString, wchar_t
- Windows NT3, NT4: UCS-2
- Since Windows 2000: UTF-16
- Delphi 2009/etc. UnicodeString: UTF-16
UTF-8

- Coding as 8-Bit strings
- Called „File System Safe“ (FSS) in its early days
- 7-bit US-ASCII characters untouched, all others occupy 2 to 4 consecutive bytes
- Complete codespace can be encoded
- Advantage: „Latin“ texts quite compact and readable in unaware editors
- Problem: string length, substrings, etc.
- No BOM necessary, but sometimes used as an indicator for UTF-8 text
UTF-8 coding

- US-ASCII characters untouched, Bit 7 reset: `0xxxxxxx`
- All others are sequences of bytes with Bit 7 set: `1xxxxxxx`
- Head Byte: As many leading bits set as length of sequence: `110xxxxx`
- Tail Bytes: Bit 7 set, Bit 6 reset: `10xxxxxx`
- Recognize the type of byte:
 - Complete character: `0xxxxxxx`
 - Part of a sequence: `1xxxxxxx`
 - Sequence head: `11xxxxxx`
 - Sequence tail: `10xxxxxx`
UTF-8 coding

- Bits after the type bits remain for encoding the Code Point

ä – LATIN SMALL LETTER A WITH DIAERESIS
00E4₁₆ = 228₁₀ = 11100100₂

00000 – 0007F: 0xxxxxxx
0080 – 0007FF: 110xxxxx 10xxxxxx
0800 – 0FFF: 1110xxxx 10xxxxxx 10xxxxxx
10000 – 1FFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

110xxxxx 10xxxxxx
 ooo11 100100
-------- --------
11000011 10100100 bin
C3 A4 hex
195 164 dez
Ä â Latin-1

ä – LATIN SMALL LETTER A WITH DIAERESIS
00E4₁₆ = 228₁₀ = 11100100₂

00000 – 0007F: 0xxxxxxx
0080 – 0007FF: 110xxxxx 10xxxxxx
0800 – 0FFF: 1110xxxx 10xxxxxx 10xxxxxx
10000 – 1FFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

110xxxxx 10xxxxxx
 ooo11 100100
-------- --------
11000011 10100100 bin
C3 A4 hex
195 164 dez
Ä â Latin-1
UTF-8 with ISO 8859-1 Rendering

Jürgen Klinsmann
UCS-4, UTF-32

- 32 Bits per Character
- Every code point as one 32-bit word in memory
- Fat but handy (1 word = 1 character)
- Endianness issues (UTF-32BE, UTF-32LE, BOM)
- Complete codespace can be coded
- No practical differences between UCS-4 (ISO) and UTF-32 (Unicode)
What is Plain Text?

- For every string, for every text (file, e-mail, attachment, download, etc) the encoding MUST be known.

- Plain text can begin with a BOM

 There Ain't No Such Thing As Plain Text.
 -- Joel Spolsky
Transcoding / Transliteration

- Transformation from special character sets to Unicode and back
- e.g. Windows-1252 → Unicode → ISO 8859-1
- Translation tables: www.unicode.org
- Characters can get lost (ك becomes ?)
- Characters can get transformed (ç becomes c)
Sorting

• Sorting rules also apply for searching
• There are cultural differences
 • treat ä like a
 • treat ä like ae
 • treat ä as a separate character after z
• Unicode defines algorithms and delivers tables for sorting
Case Mappings

- Not available in every language
- Not always reversible
- Turkish: i → l, i → İ English: i → l
- Not necessarily 1:1 β → SS
- Case Mappings are language dependant
Comparisons, Sorting

• Case Insensitive
 Firebird = FIREBIRD ?
 river = RiVeR ?
 Fluß = FLUSS ?

 a B c <---> B a c

• Accent Insensitive
 Amélie = Amelie ?

 a é i o ù <---> a i o é ù
Firebird and Character Sets
CHAR / VARCHAR Fields

- Every CHAR or VARCHAR column has a character set applied by Firebird
 (Remember? „There is no such thing as plain text“)
- This character set will be used for storage
- The character set can be defined when declaring the column:

```sql
create table persons (
    pers_id integer not null primary key,
    last_name  varchar (50) character set iso8859_1,
    first_name varchar (50) character set iso8859_1
);```


Default Character Set

• A default character set for all string columns can be defined together with CREATE DATABASE:

```sql
create database 'employee.gdb'
 default character set ISO8859_1;
```

• You can override the default character set:

```sql
create table persons (
 pers_id integer not null primary key,
 last_name varchar (50),
 first_name varchar (50),
 czech_name varchar (50) character set iso8859_2
);
```
Text Blobs

- Character Sets also apply to text blobs

```sql
create table persons (
 pers_id integer not null primary key,
 last_name varchar (50),
 first_name varchar (50),
 resume blob sub_type text
);
```
Client Character Set

- The Client application defines a character set for its connection
- All strings will be transliterated to/from this Client Character Set
- Firebird 1.5: „Unable to transliterate between character sets“
- Firebird 2.x: ServerCS <-> Unicode <-> ClientCS
How to define the Client Character Set

- **IBObjects:**
  IB_Connection1.CharSet := 'ISO8859_1';

- **IBX:**
  IbDatabase1.Params.Add ('lc_ctype=ISO8859_1');

- **IBDAC:**
  Connection.Options_CHARSET := 'ISO8859_1';
  Connection.Options.UseUnicode := false;
  Connection.Options.EnableMemos := false;

- **PHP:**
  $db = ibase_connect ($Name, $Usr, $Pwd, "ISO8859_1");
Collations

- Define sort ordering for ORDER BY
- Define casing rules for UPPER(), LOWER()

```sql
SELECT *
FROM ...
WHERE UPPER (NAME COLLATE DE_DE) = :SEARCHNAME
ORDER BY LASTNAME COLLATE FR_CA
```

- Define comparison rules (A = B, A <> B)

```sql
WHERE NAME COLLATE UNICODE_CI = :PERSNAME COLLATE UNICODE_CI
```

- Collations defined per Character Set
- Examples:
  - ISO8859_1: DE_DE, DU_NL, FR_FR, FR_CA, PT_PT, PT_BR
  - WIN1250: WIN1250, BS_BA, WIN_CZ, WIN_CZ_CI_AI
  - UTF8: UCS_BASIC, UNICODE, UNICODE_CI, UNICODE_CI_AI
Defining the Collation for a Column

• There is no such thing as a default collation

• Oh, wait: there IS since Firebird 2.5

• You can define the standard collation for a column:
  
  ```
 create table persons (
 pers_id integer not null primary key,
 last_name varchar (50) collate de_de,
 first_name varchar (50) collate de_de, ...);
  ```

• Or you can define it with every string usage:
  
  ```
 where name collate unicode_ci = myname
  ```
Default Collations

- Feature introduced in Firebird 2.5 / ODS 11.2
- Define the default collation for the default character set in CREATE DATABASE:

```
create database <file name>
 [page_size <page size>]
 [length = <length>]
 [user <user name>]
 [password <user password>]
 [set names <charset name>]
 [default character set <charset name>
 [[collation <collation name>]]]
```

```
create database elvis:presley
 page_size 16384
 user presley
 password guitar
 default character set iso8859_1
 collation de_de;
```
Default Collations (continued)

- New syntax to change the default collation for existing databases:

```
ALTER CHARACTER SET <charset_name>
 SET DEFAULT COLLATION <collation_name>
```

Example:

```
ALTER CHARACTER SET ISO8859_1
 SET DEFAULT COLLATION DE_DE;
```
User-Defined Collations

- CREATE COLLATION
- Poorly documented
- Examples don't work
- Dead? Badly documented? More investigation necessary
UPPER(), LOWER()

- Firebird 1.0/1.5: UPPER() only works correctly if there is a collation defined for the parameter field. Without collation no uppercasing of letters outside the a..z range.
- Firebird 2.x: UPPER() will return uppercased characters for all characters, no collation required
- Firebird 2.x: New LOWER() function
Case insensitive Searching

- WHERE LIKE, WHERE STARTING WITH, WHERE =

```sql
select * from persons
where upper (last_name) like '%%MITR%%'

select * from persons
where upper (last_name) starting with 'DMIT'

select * from persons
where upper (last_name collate de_de) like '%%Ä%%'

select * from persons
where last_name collate unicode_ci like '

' collate unicode_ci
Indexed Case Insensitive Searches

Firebird 1.5: Shadow Field and Trigger

```sql
create table persons (
    name       varchar (50) collate de_de,
    name_upper varchar (50) collate de_de);

create index idx_person_name on persons (name_upper);

create or replace trigger biu_persons for persons
before insert or update as
begin
    new.name_upper = upper (new.name);
end;

select * from persons
where name_upper = 'LÖW'
```
Indexed Case Insensitive Searches

Firebird 2.x: Expression Index

create table persons (
 name varchar (50) collate de_de,
 city varchar (50));

create index idx_person_name on persons
 computed by (upper (name));

select * from persons
where upper (name) = 'FIREBIRD'

create index idx_person_city on persons
 computed by (upper (city collate de_de));

select * from persons
where upper (city collate de_de) = 'MÜNCHEN'
Firebird and Unicode

- Unicode internally stored as UTF-8
- Character Set **UNICODE_FSS**: an old version of UTF8 that accepts malformed strings and does not enforce correct maximum string length. Fixed in Firebird 2.5.
- Character Set **UTF8** since Firebird 2.0: Replacement for UNICODE_FSS
- Unicode used for transliteration between character sets: CS <-- Unicode --> CS
- Unicode collation implemented for comparisons and casings (ICU DLLs)
Unicode Collations for UTF8

- UCS_BASIC: sorts in Unicode Code Point order
- UNICODE: uses the Unicode Collation Algorithm
- UNICODE_CI: Case-insensitive [FB2.1]
- UNICODE_CI_AI: Case-/Accent-insensitive [FB2.5]

```
select * from t order by c collate ucs_basic;
A B a b á

select * from t order by c collate unicode;
a A á b B
```
Special Character Sets

- **NONE**: Plain octets, no character set applied. With this character set setting, Firebird is unable to perform conversion operations like UPPER() correctly on anything other than the standard 26 latin letters.

- **OCTETS**: Same as NONE. Cannot be used as client connection character set. Space character is #x00

- **ASCII**: US-ASCII (English only)

- **UNICODE_FSS**: an old version of UTF8 that accepts malformed strings and does not enforce correct maximum string length. Replaced by **UTF8** in FB2.0.
Character Sets and Collations

• **ISO8859_x** (e.g. ISO8895_1, ISO8859_2)
 Collations: DE_DE, FR_FR, CS_CZ, etc.

• **WIN125x** (e.g. WIN1252, WIN1250)
 Collations: WIN1252, WIN_PTBR, PXW_CSY, etc.

• **DOSxxx** (e.g. DOS850, DOS852)
 Collations: DB_DEU850, PDOX_CSY

• Complete List:
 www.destructor.de/firebird/charsets.htm
Other Character Sets

- BIG_5: Chinese
- CYRL, KOI8-R, KOI8-U: Cyrillic, Russian, Ukrainian
- KSC_5601: Korean
- SJIS_0208: Japanese
- EUCJ_0208: Japanese
- GB_2312: Chinese
Which one to select?

• DOS, dBASE and Paradox only for legacy support
• WINxxx is extension of corresponding ISOxxx, but may lead to problems on non-Windows systems.
• ISOxxx is missing a few characters of WINxxx (e.g. typographic dash signs) –> prepare to handle this
• If you expect to store several languages, use Unicode UTF8
Links

• The Unicode Consortium. The Unicode Standard
 www.unicode.org

• My Firebird Website and Conference Blog/Gallery
 www.destructor.de/firebird
Questions?

Stefan Heymann

www.consic.de
heymann@consic.de

www.destructor.de
stefan@destructor.de
Thank You!
Danke! Merci! Grazie!
¡Gracias! Obrigado!
Děkuji! Paldies! Hvala!
СПАСИБО