Tips for success

Common mistakes in application development
with Firebird and how to avoid them

Pavel Cisar
IBPhoenix

Firebird Conference 2011




W o e S ——— —

Agenda

» Recipes for disaster
» Mistakes in database design
» Wrong approaches to handle data




Recipes for disaster

“Agile Knowledge Management”
Wrong assumptions

Unjustified trust to SW, HW, tools etc.
“Thinking only up to the AP/’
Preferring the way of least resistance
No prototyping / No testing




Solution

Think, don't just copy!

If it walks as duck, squeaks as duck, it could
be a beaver In disguise!

Don't trust strangers!
...especially those who offer you candy!

You don't know until you verify it, so what
you're waiting for?




Database Design

» Artificial vs. Natural primary keys
- VARCHAR vs. BLOB
» Character sets

» Security




Artificial vs. Natural keys

» Artificial keys are always better (at the end)
- ...but there's hidden bloody price...
» ...the JOIN HELL

- Users want to see anything else but keys
- Users use anything but keys for search

- You have to join tables to get in important
columns even it wouldn't be necessary

- You have to add more indices




Solution

» Use natural keys for most used “leaf” tables

» Cache the lookup tables in application

- Full set for small ones
- MRU for big ones




VARCHAR & BLOB — The Wrong

» People decide by feel, not reason
» Focus on values, not how they're used
» QOversize just to be safe




VARCHAR vs. BLOB - Solution

There is a great guide from lvan Prenosil
http://www.volny.cz/iprenosil/interbase/ip _ib_strings.htm

Quick tips:

Anything longer than 150 characters is good candidate for
BLOB

BLOBs are bad news for search and server-side processing
Long VARCHARSs are bad news for sorts

You can combine several long VARCHARSs into single
BLOB or refactor them out to 1:1 table

More than one BLOB per table is bad idea
(Refactor BLOBs out to 1:1 table)



http://www.volny.cz/iprenosil/interbase/ip_ib_strings.htm

Golden Rule of Database design

Get as much rows on
single page as you can

* BIGINT x INTEGER

- DATE x TIMESTAMP “_..

, * Non-empty BLOBs Lengeh
are rows too!

» Pages smaller than
8K are pointless

N

~TT

X SMALLINT -




W Sl B —

Character sets

Not that big problem today,
But still some developers are careless
or blindly default to UTF-8




Character sets - Solution

* Always use one!

» Consider conversions!

- What is native data type/encoding for strings
your application uses?

— Minimize number and complexity of
conversions:
Database <-> Application <-> Input/Output




Security — The problem

Either
NO security at all
or
Extreme security measures




Security - Solution

« Use as little from SQL security features as you
can

* Use remote server with restricted access

* Your application is exclusive gateway to the
database

, » Use OWNER account (block SYSDBA if you
want)

* Implement fine-grained security in your
application

) e ———— -




Handling data — The wrong

“When | did this in ISQL, Flamerobin, my other

app etc., it worked just fine, so what's wrong
now?”

“It worked just fine on my development
machine, so why it fails in production?”

“Damn, it doesn't scale as | expected...”




Handling data 101

Get intimate with your connectivity library!
Always manage your transactions manually!
Always mind the MGA!

Never fetch more data than you actually need!

One size doesn't fit all:
Interactive vs. Machine processing

Native vs. Web applications
Embedded vs. Department vs. Corporate




Know your connectivity

- ldentify higher and lower level access paths

» Learn the steps the access paths use

- Path complexity

- Data conversions

- Storage requirements
- Algorithm efficiency

- Points of failure




Transactions

Interactive

All data read in single transaction
READ_ ONLY READ COMMITTED

Writes in separate R/W transaction
Machine processing

R/W in single SNAPSHOT or
READ_COMMITTED

No UNDO log
Long running “monitoring” transactions
READ_ ONLY READ_COMMITTED




EEEEEEEEE—— —
MGA Implications

» Long running transactions block GC

 |Inserts never block other users, update and
delete may block

» Changes create garbage

* Correlating inserts with update/delete is VERY
bad idea

 Mass update/delete burdens you with GC




Minimizing data transfers

* Interactive

- Less rows
- Less columns, fetch the rest on demand
— Cache lookups on client

» Machine processing

- Do as much on the server as you can




Beware the “One code to rule them all”

Except the simplest cases, there is direct
proportionality between universality and direct

cost

Universal code that doesn't have an option to
cop-out on special case to user code is recipe

for disaster




Questions?

Pavel Cisar
pcisar@ibphoenix.cz
IBPhoenix
www.ibphoenix.com



http://www.ibphoenix.com/

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22

