
A not-so-very technical discussion of
Multi Version Concurrency Control

A comment on a discussion between IBM and Oracle sales departments with regard
to the pros and cons of multi-version concurrency control. IBM DB2 is a classic
example of the database system with pessimistic locking, while Oracle uses record
versions to provide better concurrency in conditions involving both readers and
writers. Since Firebird also uses record versions, we respond to the critique from
IBM and show how Firebird would behave in such conditions.

This paper was written by Roman Rokytskyy in July 2005, and is
copyright Roman Rokytskyy. You may republish it verbatim, including
this notation. You may update, correct, or expand the material, provided
that you include a notation that the original work was produced by
Roman Rokytskyy.

Origins of conflict
In February 2002 Oracle published a “Technical Comparison of Oracle
Database vs. IBM DB2 UDB: Focus on Performance” white paper where
they claimed to have better architecture in Oracle 9i compared to IBM DB2
UDB V7.2. In August 2002 IBM published “A Technical Discussion of
Multi Version Read Consistency” white paper claiming that Oracle multi-
version concurrency is not better than the approach used in IBM DB2, but
requires many workarounds to achieve needed results.

Traditionally, the problem of concurrency is solved using locking. If A
needs access to resource N, it locks it; after use the lock is released. If B
wants to access resource N while A is using it, it must wait. It is clear that
such approach may give very poor results when the locks are applied at a
very high level – consider the example of two editors editing different
chapters in a big MS Word document. MS Word blocks access to the
document file at the file system level. While the first editor is able to modify
the document, the second must wait until the first one finishes editing. And
this is correct, since the second editor does not know what changes were
made by the first one in general. However, MS Word gives an option to
open the document in read-only mode, allowing the second editor to read
the chapter, and plan what to change on the “secondary storage”, read
“using a pen and a sheet of paper”. When the first editor finishes editing, the
second editor re-opens the latest version of the document in a read-write
mode and “applies” the changes noted on the paper.

In its white paper Oracle claims that IBM DB2 UDB V7.2 EEE, which uses
locking as in the example above, has poor concurrency, citing the “Oracle to
DB2 Porting Guide”: “As a result of different concurrency controls in
Oracle and DB2 UDB, an application ported directly from Oracle to DB2
UDB may experience deadlocks that it did not have previously. As DB2
UDB acquires a share lock for readers, updaters may be blocked where that
was not the case using Oracle. A deadlock occurs when two or more
applications are waiting for each other but neither can proceed because
each has locks that are required by others. The only way to resolve a
deadlock is to roll back one of the applications.”1. In response, IBM claims
that Oracle's multi-version architecture does not solve the problem, since
now the database engine has to do much more I/O to access needed record
versions and the disk space for record versions is limited, and, when it is
filled completely, transactions are rolled back with a ORA-1555 "Snapshot
too old" message. IBM also claims that approach used in Oracle gives
incorrect results under some conditions and additional programming is
needed to solve the issue.

Firebird case
InterBase, the predecessor of Firebird, was among the first commercial

1 Oracle to DB2 Porting Guide, page 47,
http://www.db2udb.net/guide/program/text/oraclev3.pdf

Table of Contents

Origins of conflict................3
Firebird case.......................3

Concept.........................4
Similarities and
differences.....................4

Conclusion..........................6
References.........................7
About the Author.................7

DB2 Magazine: “...an
application ported directly
from Oracle to DB2 UDB
may experience deadlocks
that it did not have
previously”

A not-so-very technical discussion of 4
Multi Version Concurrency Control

databases to implement multi-version concurrency control (MVCC)2. This
makes the behavior of Firebird close to Oracle, however with a notable
difference – Firebird is naturally multi-versioned, while Oracle acquired this
feature in Oracle 7.x. Until than it had an architecture similar to IBM DB2.
Firebird simply does not have the negative issues emphasized in the both
white papers, while using all advantages of MVCC.

Concept

So how does it work? The main idea was already presented when we talked
about MS Word opening a file in read-only mode, but there are some
important details. As the name implies, each record in the system might
have multiple versions visible to different transactions. When a transaction
modifies a record, a new version is written to the database, and a previous
version, representing only the difference between the version of the record
that was read by the transaction and the new value of the record, is written
as a back version of that record.

How does the system know which version is visible to which transaction?
When a transaction starts, it receives a singly incrementing number. This
number uniquely identifies the transaction within the system during the
lifespan of the database since the last restore. Every change that is done in
the database is “signed” by the transaction number. When a record is read
on behalf of some transaction, the database system compares the “signature”
of the record with a transaction number. If the “signature” belongs to a
transaction that was committed when the current transaction started, that
version is returned to the application. Otherwise, the database engine
computes the needed version using the current record state and the back
versions of that record without regard to the locks that the writing
transaction has.

This is very simplified description of what happens in Firebird, for more
technical details please read the Firebird for the Database Expert: Episode
4- OAT, OIT, & Sweep article3. Ann W. Harrison provides an excellent
description with examples that illustrate the whole complexity of this issue.

Similarities and differences

The description above should be enough to see that Firebird functions
similarly to Oracle 9i.

• Multi-generational architecture allows different transactions to avoid
conflicts between readers and writers. The reading transaction can
always see a consistent view of the database regardless of the write
operations that are happening concurrently. IBM DB2 can provide

2 According to Ann W. Harrison, first was Rdb/ELN released in 1984 by DEC, second
was InterBase, both designed by Jim Starkey. Later DEC decided to push Rdb/VMS,
which had the same API, but was implemented completely different, so InterBase can
be considered the first database using MVCC that survived to our days.

3 http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_expert4

Multi-generational
architecture allows different
transactions to avoid
conflicts between readers
and writers. Reading
transaction can always see
consistent view of the
database regardless of the
write operations that happen
concurrently.

A not-so-very technical discussion of 5
Multi Version Concurrency Control

such level of concurrency only sacrificing the database consistency
and using dirty reads.

• The mechanism of back versions in Firebird is similar to the rollback
segments used in Oracle for the same purposes. Both systems are
optimistic, in other words, they assume that, in most cases, an
application will not need previous versions of the records. The
optimization is performed to give the best performance to the most
likely case.

But unlike Oracle, Firebird cannot produce anything similar to the ORA-
1555 "Snapshot too old". There is no need to estimate the size of the
rollback segments as described in the IBM white paper, since all
information needed for rollback operations and computing previous record
versions is stored inside the database itself and the database file grows
automatically if more space is needed.

However, the approach used in Firebird has its price. What Oracle solves by
rolling the rollback segments over, and which finally leads to the ORA-1555
"Snapshot too old" error, Firebird must handle differently.

The first issue is long record version chains. Oracle drops rollback segments
when they get too large. Firebird never drops a back version if it could be
seen by any running transaction. As a result, a long-lived transaction blocks
the removal of back versions of all records, causing the database to grow
and performance to deteriorate. The performance cost is due both to the
decreased density of valid data and to the cost of checking whether any back
versions of records can be deleted.

A second issue is the cost of removing back versions. Oracle's back
versions are in a separate segment. Firebird's back versions are in the
database, so they must be removed one at a time, as they are encountered by
subsequent transactions.

A third issue is the cost of a rollback. When a transaction inserts, updates, or
deletes a record, Firebird changes the database immediately, relying on the
back versions as an undo log. A failed transaction's work remains in the
database and must be removed when it is found.

Firebird successfully handles these cases without user intervention. Its
behavior is controlled by a few parameters, like “sweep interval”. However
detailed discussion is out of the scope of this paper: please see Firebird
documentation for more details.

It is worth mentioning one very nice “consequence” of the fact that there is
no recovery log. Firebird has to take additional care to keep the database file
in a consistent state – if a crash happens, there is no other place where
information can be recovered except the database file itself. This is achieved
using the careful write technique – Firebird writes data onto disk in such a
manner that, at every single moment, the database file is consistent. The
careful writes feature is something that really makes the life of the end-user
easier. In addition to automated database housekeeping, Firebird has also

...the description ... is
enough to see that Firebird
functions similar to Oracle
9i...

But unlike Oracle, Firebird
cannot produce something
similar to the ORA-1555
"Snapshot too old". This is
one of the consequences of
the overall goal to be a
DBA-free database.

...Example on Illustration 1
is used to demonstrate
weakness of Oracle 9i...

So, how does it apply to
Firebird? It will not work,
Firebird reports an error on
step 6.

A not-so-very technical discussion of 6
Multi Version Concurrency Control

automated crash recovery – a truly DBA-free database engine.

The next critique of Oracle's versioning mechanism is what IBM calls an
ability to see current data. The example on Illustration 1 is used to
demonstrate the weakness of Oracle 9i.

So, how does it apply to Firebird? It will not work. Firebird reports an error
on step 6. The logic is quite simple in this case. At the beginning of the
operation, both transactions saw a record version signed by a transaction,
let's say, 120. When transaction 1 committed on step 5, the new record
version was signed with a number of transaction 1, lets say, 125. Now, if
transaction 2 tries to update the same record, it will find that the version of
the record is no longer 120, but 125, and will report an error to the
application. The update operation will not succeed.

Furthermore, the same error will be reported if step 6 happens before step 5,
but after step 3. It is also possible to tell transaction 2 to wait until
transaction 1 finishes and then decide the outcome of the operation. If
transaction 2 is lucky and transaction 1 is rolled back (for example, the
customer booking a seat in transaction 1 changed his mind), it will
successfully book the seat for the second customer. In case of IBM DB2, the
lock conflict would have happened already in step 4, since transaction 2
would try to lock a record that had already been modified by transaction 1.
The change of mind by the first customer does not help the second one. The
application has to re-read the table and check for a new seat for the booking.

Conclusion
From the above it is clear that multi-version concurrency control, if
implemented correctly, provides a superior concurrency in cases when

Time Transaction 1 Transaction 2

1. Begin transaction

2. Begin transaction

3. Select available seats on flight
ABC111.
See seat 23F is the last seat available
Reserve this seat.

4. Select available seats on flight
ABC111. Also sees 23F as Oracle
will go to the rollback segment to
get the old version of that block.

5. Commit Transaction.

6. Reserve this seat.

7. Commit Transaction.
Successful but now the flight
is oversold.

Illustration 1: Example IBM used to show incorrect logic in Oracle 9i version control.

...multi-version concurrency
control, if implemented
correctly, provides a
superior concurrency in
cases when update conflicts
are rare compared to
traditional pessimistic
locking schemes.

A not-so-very technical discussion of 7
Multi Version Concurrency Control

update conflicts are rare compared to traditional pessimistic locking
schemes. It is also clear that there are cases when pessimistic locking will
perform better. However, the claim made by IBM that multi-version
concurrency control is not used in most database systems is no longer true
since Microsoft has decided to switch to MVCC in the next version of SQL
Server (code name Yukon). Now two of three biggest commercial database
vendors use MVCC. In fact, the versioning mechanism used in Yukon is
almost an exact copy of the mechanism used in Firebird. It took almost 20
years for other software vendors to find out that MVCC is great approach to
handle concurrent access to the database.

Acknowledgments
The author is grateful to Ann W. Harrison and Helen Borrie for their
comments and help during the preparation of this paper.

References
1. A Technical Discussion of Multi Version Read Consistency, By

IBM Software Group, Toronto Laboratory August 2002,
ftp://ftp.software.ibm.com/software/data/pubs/papers/readconsistenc
y.pdf

2. Technical Comparison of Oracle Database vs. IBM DB2 UDB:
Focus on Performance, An Oracle White Paper, February 2002

About the Author
Roman Rokytskyy is one of the Firebird Project members, leader of the
JayBird subproject, the JCA/JDBC driver for Firebird.

