
Firebird Internals
Inside a Firebird Database

Norman Dunbar

Version 1.2, 13 August 2021

Table of Contents
1. Introduction. 2

2. Database Structure. 3

2.1. Single File Databases . 3

2.2. Multiple File Databases . 3

2.3. Shadow Files . 3

3. Standard Database Page Header. 5

4. Database Header Page — Type 0x01 . 7

5. Page Inventory Page — Type 0x02 . 14

6. Transaction Inventory Page — Type 0x03 . 16

7. Pointer Page — Type 0x04 . 18

8. Data Page — Type 0x05 . 21

8.1. Record Header. 22

8.2. Record Data . 24

8.3. A Worked Example. 24

8.4. Examining The Data. 28

8.4.1. Compressed Data. 28

8.4.2. Uncompressed Data . 30

8.4.3. Null . 31

8.4.4. NULL status bitmap . 31

9. Index Root Page — Type 0x06 . 36

10. Index B-Tree Page — Type 0x07 — YOU ARE HERE.. 41

10.1. B-Tree Header . 41

10.2. Index Jump Info . 42

10.3. Index Jump Nodes . 43

10.4. Index Nodes . 43

10.5. Index Data . 43

11. Blob Data Page — Type 0x08 — TODO . 45

12. Generator Page — Type 0x09. 46

12.1. Creating Lots Of Sequences . 52

13. Write Ahead Log Page — Type 0x0a . 58

Appendix A: Fbdump. 60

Appendix B: Document history . 61

Appendix C: License notice . 62

Table of Contents

1

Chapter 1. Introduction
The purpose of this document is to try to explain what goes on inside a Firebird database. Much of
the information in this manual has been extracted from the Firebird source code — mainly on the
ODS related code and headers — and from some (partially out of date) documents on the Research
part of the IBPhoenix website (https://www.ibphoenix.com/). Other questions and queries that I had
were very patiently answered on the Firebird Support forums where the developers hang out.

Much hex dumping of database files was undertaken in the creation of this document, but no
Firebird databases were harmed during this process.

All databases mentioned or described within this document are those with an ODS of 11.1 — in
other words, Firebird 2.1 — and a page size of 4,096 bytes. There may be differences between this
ODS version and previous ones and wherever possible, this has been documented.

Unless otherwise noted, the test database used for this document is empty of all user tables, indices,
generators etc. It was created on a 32-bit Linux system running on Intel hardware. It is therefore
little endian.

Thanks to everyone who has contributed to the manual.

Chapter 1. Introduction

2

https://www.ibphoenix.com/

Chapter 2. Database Structure
When you create a new database, be it single or multiple file, a number of things happen:

• The database file(s) are created;

• The header page is formatted and written;

• The various system tables — RDB$ and MON$ — and associated indices are created, and
appropriate pages formatted and written to disc;

• Every page in the database is formatted with a defined page type.

The various page types are described elsewhere in this document.

A database is created and the DBA can specify the page size, or leave it to default. This action
creates a database file, or files, with enough space allocated to create all the system tables and
indices. New pages will be added to the end of the database file(s) as and when the user creates new
tables and/or indices. For example, a brand-new database, created on a 32-bit Linux system, with a
4Kb page size allocates a total of 0xa1 pages (161 pages) for the system tables, indices and the
various database overhead pages.

2.1. Single File Databases
A single file Firebird database consists of a number of pages, each the same size, and all held within
one file on the underlying file system, be it NTFS, FAT32, EXT3 etc.

The first page in the database is always a header page (page type 0x01 — see below) which holds
details about the database itself, the page size and so on.

The second page in the database is a Page Inventory Page or PIP (page type 0x02) which details
which pages in the database are in use and which are free.

Up until Firebird 3.0, the next page is a Write Ahead Log page (page type 0x0a) but this page is
wasted space, if present, and will most likely be dropped from Firebird 3.0 onwards.

The remaining pages consist of Index Root Pages (page type 0x06), Transaction Inventory Pages or
TIP (page type 0x03), Pointer Pages (page type 0x04), Index BTree Pages (page type 0x07), Data
Pages (page type 0x05) and so on. There is a discussion of each page type below.

2.2. Multiple File Databases
A multiple file Firebird database is almost identical to the single file database except it has more
than one file on the underlying file system. Each file has the same page size as the initial file, and
each file has a header page (page type 0x01) at the start of the file.

2.3. Shadow Files
Shadow files are additional files that can be used by single and multiple file databases to assist in
recovery after a failure of some kind. They are not helpful in the case of a DROP DATABASE as the

Chapter 2. Database Structure

3

shadow file(s) — being part of the database — are also dropped!

Shadow files are updated as the database main file(s) are updated and in this manner, the shadows
are an identical copy of the database. In the event of a problem, the SYSDBA can manually activate a
shadow, or have the Firebird engine activate one automatically.

Unfortunately, if a database write stores corrupt data in the database, the shadow file(s) will be
identically corrupted.

Because shadow files are effectively identical copies of the database files, they will not be discussed
further.

Chapter 2. Database Structure

4

Chapter 3. Standard Database Page Header
Every page in a database has a 16-byte standard page header. Various page types have an
additional header that follows on from the standard one. The C code representation of the standard
header is:

struct pag
{
 SCHAR pag_type;
 UCHAR pag_flags;
 USHORT pag_checksum;
 ULONG pag_generation;
 ULONG pag_scn;
 ULONG reserved;
};

pag_type

One byte, signed. Byte 0x00 on the page. This byte defines the page type for the page. Valid page
types are:

0x00 Undefined page. You should never see this in a database.

0x01 The database header page. Only ever seen on the very first page of the database, or,
on the first page of each database file in a multi-file database.

0x02 The Page Inventory Page (PIP). This page keeps track of allocated and free pages
using a bitmap where a 1 means the page is free, and a 0 (zero) shows a used page.
There may be more than one PIP in a database, but the first PIP is always page 1.

0x03 Transaction Inventory Page (TIP). A page that keeps track of the stat of transactions.
Each transaction is represented by a pair of bits in a bitmap. Valid values in these
two bits are:

00 this transaction is active.

01 this transaction is in limbo.

10 this transaction is dead.

11 this transaction has committed.

0x04 Pointer Page. Each table has one or more of these and this page type keeps track of
all the pages that make up the table. Pointer pages are owned by one and only one
table, there is no sharing allowed. Each pointer in the array on these pages holds
the page number for a type 5 page holding data for the table.

0x05 Data Page. These pages store the actual data for a table.

Chapter 3. Standard Database Page Header

5

0x06 Index Root Page. Similar to a type 4 Pointer Page, but applies to indexes only.

0x07 Index B-Tree Page. Similar to the type 5 Data Page, but applies to indexes only.

0x08 Blob Page. Blobs have their own storage within the database. Very large blobs will
require a sequence of pages and the type 8 page holds blob data.

0x09 Generator Page. Holds an array of 64 bit generators.

0x0a Page 2 of any database is a Write Ahead Log page. These pages are no longer used.
The page will remain blank (filled with binary zero) as it is never used. This page
has a standard header like all others.

pag_flags

One byte, unsigned. Byte 0x01 on the page. This byte holds various flags for the page.

pag_checksum

Two bytes, unsigned. Bytes 0x02 - 0x03. Checksum for the whole page. No longer used, always
12345, 0x3039. Databases using ODS8 on Windows NT do have a valid checksum here.


Discussions are underway on the development mailing list on reusing this field
as a page number rather than a checksum. From Firebird 3.0, it is possible that
this field in the page header will probably have a new name and function.

pag_generation

Four bytes, unsigned. Bytes 0x04 - 0x07. The page generation number. Increments each time the
page is written back to disc.

pag_scn

Four bytes, unsigned. Bytes 0x08 - 0x0b. Originally used as the sequence number in the Write
Ahead Log, but WAL is no longer used. The field was converted to be the SCN number to avoid
an ODS change and is now used by nbackup.

pag_reserved

Four bytes, unsigned. Bytes 0x0c - 0x0f. Reserved for future use. It was originally used for the
offset of a page’s entry in the Write Ahead Log (WAL), but this is no longer in use.

Chapter 3. Standard Database Page Header

6

Chapter 4. Database Header Page — Type
0x01
The first page of the first file of a Firebird database is a very important page. It holds data that
describes the database, where its other files are to be found, shadow file names, database page size,
ODS version and so on. On startup, the Firebird engine reads the first part (1,024 bytes) of the first
page in the first file of the database and runs a number of checks to ensure that the file is actually a
database and so on. If the database is multi-file, then each file will have a header page of its own.

The C code representation of the database header page is:

struct header_page
{
 pag hdr_header;
 USHORT hdr_page_size;
 USHORT hdr_ods_version;
 SLONG hdr_PAGES;
 ULONG hdr_next_page;
 SLONG hdr_oldest_transaction;
 SLONG hdr_oldest_active;
 SLONG hdr_next_transaction;
 USHORT hdr_sequence;
 USHORT hdr_flags;
 SLONG hdr_creation_date[2];
 SLONG hdr_attachment_id;
 SLONG hdr_shadow_count;
 SSHORT hdr_implementation;
 USHORT hdr_ods_minor;
 USHORT hdr_ods_minor_original;
 USHORT hdr_end;
 ULONG hdr_page_buffers;
 SLONG hdr_bumped_transaction;
 SLONG hdr_oldest_snapshot;
 SLONG hdr_backup_pages;
 SLONG hdr_misc[3];
 UCHAR hdr_data[1];
};

hdr_header

The database header page has a standard page header, as do all pages.

hdr_page_size

Two bytes, unsigned. Bytes 0x10 - 0x11 on the page. This is the page size, in bytes, for each and
every page in the database.

hds_ods_version

Two bytes, unsigned. Bytes 0x12 and 0x13 on the page. The ODS major version for the database.

Chapter 4. Database Header Page — Type 0x01

7

The format of this word is the ODS major version ANDed with the Firebird flag of 0x8000. In the
example below, the value is 0x800b for ODS version 11. The minor ODS version is held elsewhere
in the header page — see hdr_ods_minor below.

hdr_pages

Four bytes, signed. Bytes 0x14 - 0x17 on the page. This is the page number of the first pointer
page for the table named RDB$PAGES. When this location is known, the database engine uses it to
determine the locations of all other metadata pages in the database. This field is only valid in the
header page of the first file in a multi-file database. The remaining files in the database have this
field set to zero.

hdr_next_page

Four bytes, unsigned. Bytes 0x18 - 0x1b on the page. The page number of the header page in the
next file of the database — if this is a multi-file database. Zero otherwise.

hdr_oldest_transaction

Four bytes, signed. Bytes 0x1c - 0x1f on the page. The transaction id of the oldest active (ie,
uncommitted — but may be in limbo or rolled back) transaction against this database. This field
is only valid in the header page of the first file in a multi-file database. The remaining files in the
database have this field set to zero.

hdr_oldest_active

Four bytes, signed. Bytes 0x20 - 0x23 on the page. The transaction id of the oldest active
transaction against this database, when any active transaction started. This field is only valid in
the header page of the first file in a multi-file database. The remaining files in the database have
this field set to zero.

hdr_next_transaction

Four bytes, signed. Bytes 0x24 - 0x27 on the page. The transaction id that will be assigned to the
next transaction against this database. This field is only valid in the header page of the first file
in a multi-file database. The remaining files in the database have this field set to zero.

hdr_sequence

Two bytes, unsigned. Bytes 0x28 and 0x29 on the page. The sequence number of this file within
the database.

hdr_flags

Two bytes, unsigned. Bytes 0x2a and 0x2b on the page. The database flags. The bits in the flag
bytes are used as follows:

Flag Name Flag value Description

hdr_active_shadow 0x01 (bit 0) This file is an active shadow file.

hdr_force_write 0x02 (bit 1) The database is in forced writes mode.

Unused 0x04 (bit 2) Was previously for short term journaling, no longer
used.

Unused 0x08 (bit 3) Was previously for long term journaling, no longer used.

Chapter 4. Database Header Page — Type 0x01

8

Flag Name Flag value Description

hdr_no_checksums 0x10 (bit 4) Don’t calculate checksums.

hdr_no_reserve 0x20 (bit 5) Don’t reserve space for record versions in pages.

Unused 0x40 (bit 6) Was used to indicate that the shared cache file was
disabled.

hdr_shutdown_mask
(bit one of two)

0x1080 (bits 7 and
12)

Used with bit 12 (see below) to indicate the database
shutdown mode.

hdr_sql_dialect_3 0x100 (bit 8) If set, the database is using SQL dialect 3.

hdr_read_only 0x200 (bit 9) Database is in read only mode.

hdr_backup_mask 0xC00 (bits 10 and
11)

Indicates the current backup mode.

hdr_shutdown_mask
(bit two of two)

0x1080 (bits 7 and
12)

Used with bit 7 (see above) to indicate the database
shutdown mode.

The final two database flags use a pair of bits to indicate various states of backup and shutdown.

hdr_backup_mask

These two bits determine the current database backup mode, as follows:

Flag Value Description

0x00 (Both bits
zero)

Database is not in backup mode. User changes are written directly to the
database files.

0x400 The database is running in backup mode so all changed made by the users
are written to the diff file.

0x800 The database is still in backup mode, but changes are being merged from
the diff file into the main pages.

0xC00 The current database state is unknown and changes need to be read from
disk.

hdr_shutdown_mask

The shutdown mask uses two bits to indicate the current database shutdown status, as follows:

Flag Value Description

0x00 (Both bits 7
and 12 are zero)

Database is not shutdown. Any valid user can connect.

0x80 The database has been shutdown to, or started up in multi-user
maintenance mode. The database can only be conncted to by SYSDBA or the
database owner.

0x1000 The database has been fully shutdown. No connections are permitted.

Chapter 4. Database Header Page — Type 0x01

9

Flag Value Description

0x1080 The database has been shutdown to, or started up in single-user
maintenance mode. Only one SYSDBA or database owner connection is
permitted.

hdr_creation_date

Eight bytes, signed. Bytes 0x2c - 0x33 on the page. The date and time (in Firebird’s own internal
format) that the database was either originally created/rewritten or created from a backup.

hdr_attachment_id

Four bytes, signed. Bytes 0x34 - 0x37 on the page. The id number that will be assigned to the next
connection to this database. As this is signed, the maximum value here is 232 -1 and any database
which reaches this maximum value must be backed up and restored in order to allow new
connections. This field is only valid in the header page of the first file in a multi-file database.
The remaining files in the database have this field set to zero.

hdr_shadow_count

Four bytes, signed. Bytes 0x38 - 0x3c on the page. Holds the event count for shadow file
synchronisation for this database. The remaining files in the database have this field set to zero.

hdr_implementation

Two bytes, signed. Bytes 0x3c and 0x3d on the page. This is a number which indicates the
environment on which the database was originally created. It is used to determine if the
database file can be used successfully on the current hardware. This avoids problems caused by
little-endian numerical values as compared with big-endian, for example.

hdr_ods_minor

Two bytes, unsigned. Bytes 0x3e and 0x3f on the page. The current ODS minor version.

hdr_ods_minor_original

Two bytes, unsigned. Bytes 0x40 and 0x41 on the page. The ODS minor version when the
database was originally created.

hdr_end

Two bytes, unsigned. Bytes 0x42 and 0x43 on the page. The offset on the page where the
hdr_data finishes. In other words, where a new clumplet will be stored if required. This is
effectively a pointer to the current location of HDR_end (see clumplet details below) on this page.

hdr_page_buffers

Four bytes, unsigned. Bytes 0x44 - 0x47 on the page. Holds the number of buffers to be used for
the database cache, or zero to indicate that the default value should be used. This field is only
valid in the header page of the first file in a multi-file database. The remaining files in the
database have this field set to zero.

`hdr_bumped_transaction

Four bytes, signed. Bytes 0x48 - 0x4b on the page. Used to be used for the bumped transaction id
for log optimisation, but is currently always set to 0x01. This field is only valid in the header

Chapter 4. Database Header Page — Type 0x01

10

page of the first file in a multi-file database. The remaining files in the database have this field
set to zero.

hdr_oldest_snapshot

Four bytes, signed. Bytes 0x4c - 0x4f on the page. Holds the transaction number for the oldest
snapshot of active transactions. This is also documented as the confusing and redundant variant
of Oldest Active Transaction.

hdr_backup_pages

Four bytes, signed. Bytes 0x50 - 0x53 on the page. Holds the number of pages in the database
currently locked for a backup using nbackup. This field is only valid in the header page of the
first file in a multi-file database. The remaining files in the database have this field set to zero.

hdr_misc

Twelve bytes. Bytes 0x54 - 0x5f on the page. Set to zero. These 12 bytes are currently unused.

The following is an example of a header page from a multi-file database on a little-endian system:

00000000 01 00 39 30 08 00 00 00 00 00 00 00 00 00 00 00 Standard header
00000010 00 10 hdr_page_size
00000012 0b 80 hdr_ods_version
00000014 03 00 00 00 hdr_PAGES
00000018 00 00 00 00 hdr_next_page
0000001c 01 00 00 00 hdr_oldest_transaction
00000020 02 00 00 00 hdr_oldest_active
00000024 05 00 00 00 hdr_next_transaction
00000028 00 00 hdr_sequence
0000002a 00 01 hdr_flags
0000002c 5e d7 00 00 f4 79 00 23 hdr_creation_date
00000034 01 00 00 00 hdr_attachment_id
00000038 00 00 00 00 hdr_shadow_count
0000003c 13 00 hdr_implementation
0000003e 01 00 hdr_ods_minor
00000040 01 00 hdr_ods_minor_original
00000042 93 00 hdr_end
00000044 00 00 00 00 hdr_page_buffers
00000048 01 00 00 00 hdr_bumped_transaction
0000004c 02 00 00 00 hdr_oldest_snapshot
00000050 00 00 00 00 hdr_backup_pages
00000054 00 00 00 00 00 00 00 00 00 00 00 00 hdr_misc
00000060 hdr_data[]



From Firebird 2.x onwards, there is a system table — MON$DATABASE which has a
copy of all of the above data in an easy to obtain format:

tux> isql employee
Database: employee

Chapter 4. Database Header Page — Type 0x01

11

SQL> show table mon$database;
MON$DATABASE_NAME (RDB$FILE_NAME) VARCHAR(253) Nullable
MON$PAGE_SIZE (RDB$PAGE_SIZE) SMALLINT Nullable
MON$ODS_MAJOR (RDB$ODS_NUMBER) SMALLINT Nullable
MON$ODS_MINOR (RDB$ODS_NUMBER) SMALLINT Nullable
MON$OLDEST_TRANSACTION (RDB$TRANSACTION_ID) INTEGER Nullable
MON$OLDEST_ACTIVE (RDB$TRANSACTION_ID) INTEGER Nullable
MON$OLDEST_SNAPSHOT (RDB$TRANSACTION_ID) INTEGER Nullable
MON$NEXT_TRANSACTION (RDB$TRANSACTION_ID) INTEGER Nullable
MON$PAGE_BUFFERS (RDB$PAGE_BUFFERS) INTEGER Nullable
MON$SQL_DIALECT (RDB$SQL_DIALECT) SMALLINT Nullable
MON$SHUTDOWN_MODE (RDB$SHUTDOWN_MODE) SMALLINT Nullable
MON$SWEEP_INTERVAL (RDB$SWEEP_INTERVAL) INTEGER Nullable
MON$READ_ONLY (RDB$SYSTEM_FLAG) SMALLINT Nullable
MON$FORCED_WRITES (RDB$SYSTEM_FLAG) SMALLINT Nullable
MON$RESERVE_SPACE (RDB$SYSTEM_FLAG) SMALLINT Nullable
MON$CREATION_DATE (RDB$TIMESTAMP) TIMESTAMP Nullable
MON$PAGES (RDB$COUNTER) BIGINT Nullable
MON$STAT_ID (RDB$STAT_ID) INTEGER Nullable
MON$BACKUP_STATE (RDB$BACKUP_STATE) SMALLINT Nullable

SQL> commit;
SQL> quit;

hdr_data

The variable data area on the header page begins at offset 0x60. Data stored here is held in
clumplets and there are a number of different clumplet types, see below. This area is used to
store filenames for the next file and other miscellaneous pieces of data relating to the database.

The format of each clumplet is as follows:

type_byte

The first byte — unsigned — in each clumplet determines the type of data stored within the
clumplet. There are a number of different clumplet types:

Type Name Value Description

HDR_end 0x00 End of clumplets.

HDR_root_file_name 0x01 Original name of the root file for this database.

HDR_journal_server 0x02 Name of the journal server.

HDR_file 0x03 Secondary file name.

HDR_last_page 0x04 Last logical page of the current file.

HDR_unlicensed 0x05 Count of unlicensed activity. No longer used.

HDR_sweep_interval 0x06 Number of transactions between sweep.

HDR_log_name 0x07 Replay log name.

HDR_journal_file 0x08 Intermediate journal filename.

Chapter 4. Database Header Page — Type 0x01

12

Type Name Value Description

HDR_password_file_key 0x09 Key to compare with the password database.

HDR_backup_info 0x0a Write Ahead Log (WAL) backup information. No longer
used.

HDR_cache_file 0x0b Shared cache file. No longer used.

HDR_difference_file 0x0c Diff file used during the times when the database is in
backup mode.

HDR_backup_guid 0x0d UID generated when database is in backup mode.
Overwritten on subsequent backups.

length_byte

The second byte — again unsigned — in each clumplet specifies the size of the data that
follows.

data

The next 'n' bytes are the actual clumplet data.

The miscellaneous data stored in the header from the above database, at hdr_data, is shown below.

00000060 03 type = HDR_file
00000061 2b length = 43 bytes
00000062 2f 75 30 30 2f 66 69 72 65 62 69 72 64 2f data '/u00/firebird/'
00000070 64 61 74 61 62 61 73 65 73 2f 6d 75 6c 74 69 5f 'databases/multi_'
00000080 65 6d 70 6c 6f 79 65 65 2e 66 64 62 31 'employee.fdb1'

0000008d 04 type = HDR_last_page
0000008e 04 length = 4 bytes
0000008f a2 00 00 00 data 0xa2 = 162

00000093 00 type = HDR_end.

From the above we can see that in our multi-file database:

• The next file (after this one) is named ‘/u00/firebird/databases/multi_employee.fdb1’

• The current file has 162 pages only — and with a 4Kb page size this means that the current file
should be 663,552 bytes in size, which a quick run of ls -l will confirm.

• HDR_end is located at offset 0x93 in the page, exactly as the header field hdr_end told us (see
above).

Chapter 4. Database Header Page — Type 0x01

13

Chapter 5. Page Inventory Page — Type 0x02
Every database has at least one Page Inventory Page (PIP) with the first one always being page 1,
just after the database header page. If more are required, the current PIP points to the next PIP by
way of the very last bit on the page itself. The C code representation of the PIP page is:

struct page_inv_page
{
 pag pip_header;
 SLONG pip_min;
 UCHAR pip_bits[1];
};

pip_header

The PIP starts off with a standard page header.

pip_min

Four bytes, signed. Bytes 0x10 - 0x13 on the page. This is the bit number of the first page, on this
PIP, which is currently free for use.

pip_bits

Bytes 0x14 onwards. The remainder of the page, is an array of single bits where each bit
represents a page in the database. If the bit is set (1) then that page is free for use. If the bit is
unset (0) then the page has been used.

If the database is large, and requires another PIP elsewhere in the database, then the last bit on this
PIP represents the page number for the next PIP. For example, on a 4,096 byte page we have a total
of 4,076 bytes to represent different pages in the database. As each byte has 8 bits, we have a total
of 32,608 pages before we need a new PIP.

In a brand new database, a hex dump of the first few bytes of page 1, the first PIP, looks like the
following:

Offset Data Description
--
00001000 02 00 39 30 31 00 00 00 00 00 00 00 a1 00 00 00 Standard Header
00001010 a1 00 00 00 pip_min (low endian)
00001014 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 pip_bits[]
00001024 00 00 00 00 fe ff ff ff ff ff ff ff ff ff ff ff

In the above, we see that pip_min has the value 0x000000a1 and the following 20 bytes, the first part
of the pip_bits array, are all zero. From this, it would appear that page 0xa1 is the first available
page in the database for user tables etc and that all the pages up to that one have already been used
for the system tables and indices etc.

Looking at the bitmap again, page 0xa1 will be represented by byte 0x14, bit 0x01 of the bitmap.
This is byte 0x00001028 bit 1. We can see that this byte currently has the value 0xfe and bit 0x00 is

Chapter 5. Page Inventory Page — Type 0x02

14

already in use. So, our array is correct and so is our pip_min value — the next available page is
indeed 0xa1.

If we look at the hexdump of that particular page, at address 0x000a1000, we see that it is actually
the first byte past the current end of file, so our brand new blank database has been created with
just enough space to hold all the system tables and indexes and nothing else.

Chapter 5. Page Inventory Page — Type 0x02

15

Chapter 6. Transaction Inventory
Page — Type 0x03
Every database has at least one Transaction Inventory Page (TIP).

The highest possible transaction number is 2,147,483,647 or 0x7fffffff in a 32-bit system. Once you
hit this transaction, no more can be created, and the database needs to be shutdown, backed up and
then restored to reset the transaction numbers back to zero. The reason it has this maximum value
is simply because the code for allocating transaction numbers uses a signed value.

The C code representation of the TIP page is:

struct tx_inv_page
{
 pag tip_header;
 SLONG tip_next;
 UCHAR tip_transactions[1];
};

tip_header

The TIP starts off with a standard page header.

tip_next

Four bytes, signed. Bytes 0x10 - 0x13 on the page. This is the page number of the next TIP page, if
one exists, within the database. Zero here indicates that the current TIP page is the last TIP page.

tip_transactions

Bytes 0x14 onwards. The remainder of the page, is an array of two bit values where each pair of
bits represents a transaction and its status. Each transaction can have one of 4 status values:

0x00 this transaction is active, or has not yet started.

0x01 this transaction is in limbo. A two phase transaction has committed the first phase
but the second phase has not committed.

0x02 this transaction is dead (was rolled back).

0x03 this transaction was committed.

Looking at a hex dump of the first few bytes of a new database, which has had a few transactions
run against it, we see the following:

Offset Data Description
--
000a0014 fc ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff tip_transactions[]
000a0024 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Chapter 6. Transaction Inventory Page — Type 0x03

16

000a0034 ff ff ff ff ff ff ff ff ff ff ff ff ff 00 00 00

Now, if a new transaction starts we won’t see any changes because a live transaction and one that
has not started yet, shows up as two zero bits in the tip_transactions array. However, if it commits,
limbo’s or rolls back, we should see a change. The following is the above database after a session
connected using isql and immediately exited without doing anything:

Offset Data Description
--
000a0014 fc ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff tip_transactions[]
000a0024 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
000a0034 ff ff ff ff ff ff ff ff ff ff ff ff ff ff 00 00

You can see that it looks remarkably like loading up a connection to isql and then exiting actually
executes 4 separate transactions. We can see at the end of the last line that one byte has changed
from 0x00 to 0xff and with 2 bits per transaction, that equates to 4 separate transactions, all of
which committed.

Other tools may run fewer or indeed, more, transactions just to connect to a database and do
whatever it is that they have to do to initialise themselves.

Chapter 6. Transaction Inventory Page — Type 0x03

17

Chapter 7. Pointer Page — Type 0x04
A pointer page is used internally to hold a list of all — or as may will fit on one pointer page — data
pages (see below) that make up a single table. Large tables may have more than one pointer page
but every table, system or user, will have a minimum of one pointer page. The RDB$PAGES table is
where the Firebird engine looks to find out where a table is located within the physical database,
however, RDB$PAGES is itself a table, and when the database is running, how exactly can it find the
start page for RDB$PAGES in order to look it up?

The database header page contains the page number for RDB$PAGES at bytes 0x14 - 0x17 on the page.
From experimentation, it appears as if this is always page 0x03, however, this cannot be relied
upon and if you need to do this, you should always check the database header page to determine
where RDB$PAGES is to be found.

The C code representation of a pointer page is:

struct pointer_page
{
 pag ppg_header;
 SLONG ppg_sequence;
 SLONG ppg_next;
 USHORT ppg_count;
 USHORT ppg_relation;
 USHORT ppg_min_space;
 USHORT ppg_max_space;
 SLONG ppg_page[1];
};

ppg_header

A pointer page starts with a standard page header. In the header, the pag_flags field is used and
is set to the value 1 if this is the final pointer page for the relation.

ppg_sequence

Four bytes, signed. Offset 0x10 to 0x13 on the page. The sequence number of this pointer page in
the list of pointer pages for the table. Starts at zero.

ppg_next

Four bytes, signed. Offset 0x14 to 0x17 on the page. The page number of the next pointer page
for this table. Zero indicates that this is the final pointer page.

ppg_count

Two bytes, unsigned. Offset 0x18 and 0x19 on the page. This field holds the count of active slots
(in the ppg_page array) on this pointer page, that are in use. As the array starts at zero, this is also
the index of the first free slot on this pointer page.

ppg_relation

Two bytes, unsigned. Offset 0x1a and 0x1b on the page. This field holds the

Chapter 7. Pointer Page — Type 0x04

18

RDB$RELATIONS.RDB$REALTION_ID for the table that this pointer page represents.

ppg_min_space

Two bytes, unsigned. Offset 0x1c and 0x1d on the page. This indicates the first entry in the
ppg_page array holding a page number which has free space in the page.

ppg_max_space

Two bytes, unsigned. Offset 0x1e and 0x1f on the page. This was intended to indicate the last
entry in the ppg_page array holding a page number which has free space in the page, but it has
never been used. These two bytes are invariably set to zero.

ppg_page

An array of 4-byte signed values, starting at offset 0x20. Each value in this array represents a
page number where a part of the current table is to be found. A value of zero in a slot indicates
that the slot is not in use. Deleting all the data from a table will result in all slots being set to
zero.

Page fill bitmaps

At the end of each pointer page is a bitmap array of two bit entries which is indexed by the same
index as the ppg_page array. These bitmaps indicate that the page is available for use in storing
records (or record versions) or not. The two bits in the bitmap indicate whether a large object
(BLOB?) is on this page, and the other bit indicates that the page is full. If either bit is set (page
has a large object or page is full, then the page is not used for new records or record versions.

The location of the bitmaps on each page is dependent on the page size. The bigger the page, the
more slots in the ppg_page array can hold and so the bitmap is bigger. A bigger bitmap starts at a
lower address in the page and so on. From looking inside a few databases with a 4Kb page size,
the bitmaps begin at offset 0x0f10 on the page.

You can find the pointer page for any table by running something like the following query in isql:

SQL> SELECT P.RDB$PAGE_NUMBER, P.RDB$PAGE_SEQUENCE, P.RDB$RELATION_ID
CON> FROM RDB$PAGES P
CON> JOIN RDB$RELATIONS R ON (R.RDB$RELATION_ID = P.RDB$RELATION_ID)
CON> WHERE R.RDB$RELATION_NAME = 'EMPLOYEE'
CON> AND P.RDB$PAGE_TYPE = 4;

RDB$PAGE_NUMBER RDB$PAGE_SEQUENCE RDB$RELATION_ID
=============== ================= ===============
 180 0 131

The page number which has RDB$PAGE_SEQUENCE holding the value zero is the top level pointer page
for this table. In the above example, there is only one pointer page for the EMPLOYEE table. If we now
hexdump the pointer page for the employee table, we see the following:

000b4000 04 01 39 30 02 00 00 00 00 00 00 00 00 00 00 00 Standard header
000b4010 00 00 00 00 ppg_sequence
000b4014 00 00 00 00 ppg_next

Chapter 7. Pointer Page — Type 0x04

19

000b4018 02 00 ppg_count
000b401a 83 00 ppg_relation
000b401c 01 00 ppg_min_space
000b401e 00 00 ppg_max_space
000b4020 ca 00 00 00 ppg_page[0]
000b4024 cb 00 00 00 ppg_page[1]
000b4028 00 00 00 00 ppg_page[2]
000b402c 00 00 00 00 ppg_page[3]
...
000b4f10 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000b4f20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

Looking at the above, we can see at address 0x0b4f10 on the page, that the byte there has the value
of 0x01. This is an indicator that the page in ppg_page[0] — page 0xca — is full to capacity (bit 0 set)
and does not have any large objects on the page (bit 1 unset). The page at ppg_page[1] — page
0xcb — is, on the other hand, not full up yet (bit 2 is unset) and doesn’t have a large object on the
page either. This means that this page is available for us.

This is confirmed by checking the value in ppg_min_space which has the value 0x0001 and does
indeed correspond to the first page with free space. The value in ppg_min_space is the index into the
ppg_array and not the page number itself.

Chapter 7. Pointer Page — Type 0x04

20

Chapter 8. Data Page — Type 0x05
A data page belongs exclusively to a single table. The page starts off, as usual, with the standard
page header and is followed by an array of pairs of unsigned two byte values representing the
'table of contents' for this page. This array fills from the top of the page (lowest address, increasing)
while the actual data it points to is stored on the page and fills from the bottom of the page (highest
address, descending).

The C code representation of a data page is:

struct data_page
{
 pag dpg_header;
 SLONG dpg_sequence;
 USHORT dpg_relation;
 USHORT dpg_count;
 struct dpg_repeat {
 USHORT dpg_offset;
 USHORT dpg_length;
 } dpg_rpt[1];
};

dpg_header

The page starts with a standard page header. In this page type, the pag_flags byte is used as
follows:

Bit 0 dpg_orphan. Setting this bit indicates that this page is an orphan — it has no entry in
the pointer page for this relation. This may indicate a possible database corruption.

Bit 1 dpg_full. Setting this bit indicates that the page is full up. This will be also seen in
the bitmap array on the corresponding pointer page for this table.

Bit 2 dpg_large. Setting this bit indicates that a large object is stored on this page. This
will be also seen in the bitmap array on the corresponding pointer page for this
table.

dpg_sequence

Four bytes, signed. Offset 0x10 on the page. This field holds the sequence number for this page in
the list of pages assigned to this table within the database. The first page of any table has
sequence zero.

dpg_relation

Two bytes, unsigned. Offset 0x14 on the page. The relation number for this table. This
corresponds to RDB$RELATIONS.RDB$RELATION_ID.

dpg_count

Two bytes, unsigned. Offset 0x16 on the page. The number of records (or record fragments) on
this page. In other words, the number of entries in the dpg_rpt array.

Chapter 8. Data Page — Type 0x05

21

dpg_rpt

This is an array of two byte unsigned values. The array begins at offset 0x20 on the page and
counts upwards from the low address to the higher address as each new record fragment is
added.

The two fields in this array are:

dpg_offset

Two bytes, unsigned. The offset on the page where the record fragment starts. If the value
here is zero and the length is zero, then this is an unused array entry. The offset is from the
start address of the page. For example, if the offset is 0x0fc8 and this is a database with a 4Kb
page size, and the page in question is page 0xcd (205 decimal) then we have the offset of
0xcdfc8 because 0xcd000 is the actual address (in the database file) of the start of the page.

dpg_length

Two bytes, unsigned. The length of this record fragment in bytes.

The raw record data is structured into a header and the data.

8.1. Record Header
Each record’s data is preceded by a record header. The format of the header is shown below. Note
that there are two different record headers, one for fragmented records and the other for
unfragmented records.

// Record header for unfragmented records.
struct rhd {
 SLONG rhd_transaction;
 SLONG rhd_b_page;
 USHORT rhd_b_line;
 USHORT rhd_flags;
 UCHAR rhd_format;
 UCHAR rhd_data[1];
};

/* Record header for fragmented record */
struct rhdf {
 SLONG rhdf_transaction;
 SLONG rhdf_b_page;
 USHORT rhdf_b_line;
 USHORT rhdf_flags;
 UCHAR rhdf_format;
 SLONG rhdf_f_page;
 USHORT rhdf_f_line;
 UCHAR rhdf_data[1];
};

Both headers are identical up to the rhd_format field. In the case of an unfragmented record there

Chapter 8. Data Page — Type 0x05

22

are no more fields in the header while the header for a fragmented record has a few more fields.
How to tell the difference? See the details of the rhd_flags field below.

rhd_transaction

Four bytes, signed. Offset 0x00 in the header. This is the id of the transaction that created this
record.

rhd_b_page

Four bytes, signed. Offset 0x04 in the header. This is the record’s back pointer page.

rhd_b_line

Two bytes, unsigned. Offset 0x08 in the header. This is the record’s back line pointer.

rhd_flags

Two bytes, unsigned. Offset 0x0a in the header. The flags for this record or record fragment. The
flags are discussed below.

Flag Name Flag value Description

rhd_deleted 0x01 (bit 0) Record is logically deleted.

rhd_chain 0x02 (bit 1) Record is an old version.

rhd_fragment 0x04 (bit 2) Record is a fragment.

rhd_incomplete 0x08 (bit 3) Record is incomplete.

rhd_blob 0x10 (bit 4) This is not a record, it is a blob. This bit also affects the
usage of bit 5.

rhd_stream_blob/r
hd_delta

0x20 (bit 5) This blob (bit 4 set) is a stream blob, or, prior version is
differences only (bit 4 clear).

rhd_large 0x40 (bit 6) Object is large.

rhd_damaged 0x80 (bit 7) Object is know to be damaged.

rhd_gc_active 0x100 (bit 8) Garbage collecting a dead record version.

rhd_format

One byte, unsigned. Offset 0x0c in the header. The record format version.

rhd_data

Unsigned byte data. Offset 0x0d in the header. This is the start of the compressed data. For a
fragmented record header, this field is not applicable.

The following only apply to the fragmented record header. For an unfragmented record, the data
begins at offset 0x0d. Fragmented records store their data at offset 0x16.

rhdf_f_page

Four bytes, signed. Offset 0x10 (Padding bytes inserted). The page number on which the next
fragment of this record can be found.

Chapter 8. Data Page — Type 0x05

23

rhdf_f_line

Two bytes, unsigned. Offset 0x14. The line number on which the next fragment for this record
can be found.

rhdf_data

Unsigned byte data. Offset 0x16 in the header. This is the start of the compressed data for this
record fragment.

8.2. Record Data
Record data is always stored in a compressed format, even if the data itself cannot be compressed.

The compression is a type known as Run Length Encoding (RLE) where a sequence of repeating
characters is reduced to a control byte that determines the repeat count followed by the actual byte
to be repeated. Where data cannot be compressed, the control byte indicates that "the next 'n'
characters are to be output unchanged".

The usage of a control byte is as follows:

Positive n the next 'n' bytes are stored 'verbatim'.

Negative n the next byte is repeated 'n' times, but stored only once.

Zero if detected, end of data. Normally a padding byte.

The data in a record is not compressed based on data found in a previously inserted record — it
cannot be. If you have the word 'Firebird' in two records, it will be stored in full in both. The same
applies to fields in the same record — all storage compression is done within each individual field
and previously compressed fields have no effect on the current one. (In other words, Firebird
doesn’t use specialised 'dictionary' based compression routines such as LHZ, ZIP, GZ etc)

Repeating short strings such as 'abcabcabc' are also not compressed.

Once the compression of the data in a column has been expanded, the data consists of three
parts — a field header, the actual data and, if necessary, some padding bytes.

Obviously, when decompressing the data, the decompression code needs to be able to know which
bytes in the data are control bytes. This is done by making the first byte a control byte. Knowing
this, the decompression code is easily able to convert the stored data back to the uncompressed
state.

The following section shows a worked example of an examination of a table and some test data.

8.3. A Worked Example
The shows an internal examination of a Firebird Data Page. For this very simple example, the
following code was executed to create a single column test table and load it with some character
data:

Chapter 8. Data Page — Type 0x05

24

SQL> CREATE TABLE NORMAN(A VARCHAR(100));
SQL> COMMIT;

SQL> INSERT INTO NORMAN VALUES ('Firebird');
SQL> INSERT INTO NORMAN VALUES ('Firebird Book');
SQL> INSERT INTO NORMAN VALUES ('666');
SQL> INSERT INTO NORMAN VALUES ('abcabcabcabcabcabcabcabcd');
SQL> INSERT INTO NORMAN VALUES ('AaaaaBbbbbbbbbbCccccccccccccccDD');
SQL> COMMIT;

SQL> INSERT INTO NORMAN VALUES (NULL);
SQL> COMMIT;

We now have a table and some data inserted by a pair of different transactions, where is the table
(and data) stored in the database? First of all we need the relation id for the new table. We get this
from RDB$RELATIONS as follows:

SQL> SELECT RDB$RELATION_ID FROM RDB$RELATIONS
CON> WHERE RDB$RELATION_NAME = 'NORMAN';

RDB$RELATION_ID
===============
 129

Given the relation id, we can interrogate RDB$PAGES to find out where out pointer page (page type
0x04) lives in the database:

SQL> SELECT * FROM RDB$PAGES
CON> WHERE RDB$RELATION_ID = 129
CON> AND RDB$PAGE_TYPE = 4;

RDB$PAGE_NUMBER RDB$RELATION_ID RDB$PAGE_SEQUENCE RDB$PAGE_TYPE
=============== =============== ================= =============
 162 129 0 4

From the above query, we see that page number 162 in the database is where the pointer page for
this table is to be found. As described above, the pointer page holds the list of all the page numbers
that belong to this table. If we look at the pointer page for our table, we see the following:

tux> ./fbdump ../blank.fdb -p 162

Page Buffer allocated. 4096 bytes at address 0x804b008
Page Offset = 663552l

DATABASE PAGE DETAILS
=====================

Chapter 8. Data Page — Type 0x05

25

 Page Type: 4
 Sequence: 0
 Next: 0
 Count: 1
 Relation: 129
 Min Space: 0
 Max Space: 0

 Page[0000]: 166

Page Buffer freed from address 0x804b008

We can see from the above this is indeed the pointer page (type 0x04) for our table (relation is 129).
The count value shows that there is a single data page for this table and that page is page 166. If we
now dump page 166 we can see the following:

tux> ./fbdump ../blank.fdb -p 166

Page Buffer allocated. 4096 bytes at address 0x804b008
Page Offset = 679936l

DATABASE PAGE DETAILS
=====================
 Page Type: 5
 Sequence: 0
 Relation: 130
 Count: 6
 Page Flags: 0: Not an Orphan Page:Page has space:No Large Objects

 Data[0000].offset: 4064
 Data[0000].length: 30

 Data[0000].header
 Data[0000].header.transaction: 343
 Data[0000].header.back_page: 0
 Data[0000].header.back_line: 0
 Data[0000].header.flags: 0000:No Flags Set
 Data[0000].header.format:
 Data[0000].hex: 01 fe fd 00 0a 08 00 46 69 72 65 62 69 72 64 a4
 00
 Data[0000].ASCII: F i r e b i r d .
 .

 Data[0001].offset: 4028
 Data[0001].length: 35

 Data[0001].header
 Data[0001].header.transaction: 343
 Data[0001].header.back_page: 0
 Data[0001].header.back_line: 0

Chapter 8. Data Page — Type 0x05

26

 Data[0001].header.flags: 0000:No Flags Set
 Data[0001].header.format:
 Data[0001].hex: 01 fe fd 00 0f 0d 00 46 69 72 65 62 69 72 64 20
 42 6f 6f 6b a9 00
 Data[0001].ASCII: F i r e b i r d
 B o o k . .

 Data[0002].offset: 4004
 Data[0002].length: 24

 Data[0002].header
 Data[0002].header.transaction: 343
 Data[0002].header.back_page: 0
 Data[0002].header.back_line: 0
 Data[0002].header.flags: 0000:No Flags Set
 Data[0002].header.format:
 Data[0002].hex: 01 fe fd 00 02 03 00 fd 36 9f 00
 Data[0002].ASCII: 6 . .

 Data[0003].offset: 3956
 Data[0003].length: 47

 Data[0003].header
 Data[0003].header.transaction: 343
 Data[0003].header.back_page: 0
 Data[0003].header.back_line: 0
 Data[0003].header.flags: 0000:No Flags Set
 Data[0003].header.format:
 Data[0003].hex: 01 fe fd 00 1b 19 00 61 62 63 61 62 63 61 62 63
 61 62 63 61 62 63 61 62 63 61 62 63 61 62 63 64
 b5 00
 Data[0003].ASCII: a b c a b c a b c
 a b c a b c a b c a b c a b c d
 . .

 Data[0004].offset: 3920
 Data[0004].length: 36

 Data[0004].header
 Data[0004].header.transaction: 343
 Data[0004].header.back_page: 0
 Data[0004].header.back_line: 0
 Data[0004].header.flags: 0000:No Flags Set
 Data[0004].header.format:
 Data[0004].hex: 01 fe fd 00 03 20 00 41 fc 61 01 42 f7 62 01 43
 f2 63 02 44 44 bc 00
 Data[0004].ASCII: A . a . B . b . C
 . c . D D . .

 Data[0005].offset: 3896
 Data[0005].length: 22

Chapter 8. Data Page — Type 0x05

27

 Data[0005].header
 Data[0005].header.transaction: 345
 Data[0005].header.back_page: 0
 Data[0005].header.back_line: 0
 Data[0005].header.flags: 0000:No Flags Set
 Data[0005].header.format:
 Data[0005].hex: 01 ff 97 00 00 00 00 00 00
 Data[0005].ASCII:

Page Buffer freed from address 0x804b008

We can see from the above, the records appear in the order we inserted them. Do not be misled — if
I was to delete one or more records and then insert new ones, Firebird could reuse some or all of
the newly deleted space, so record 1, for example, might appear in the “wrong” place in a dump as
above.


This is a rule of relational databases, you can never know the order that data will
be returned by a SELECT statement unless you specifically use an ORDER BY.

We can also see from the above Firebird doesn’t attempt to compress data based on the contents of
previous records. The word 'Firebird' appears in full each and every time it is used.

We can see, however, that data that has repeating characters — for example '666' and
'AaaaaBbbbbbbbbbCccccccccccccccDD' — do get compressed — but records with repeating
consecutive strings of characters — for example 'abcabcabcabcabcabcabcabcd' do not get
compressed.

8.4. Examining The Data
Looking into how the compression works for the above example is the next step.

8.4.1. Compressed Data

Record number 4 has quite a lot of compression applied to it. The stored format of the record’s data
is as follows:

Data[0004].offset: 3920
 Data[0004].length: 36

 Data[0004].header
 Data[0004].header.transaction: 343
 Data[0004].header.back_page: 0
 Data[0004].header.back_line: 0
 Data[0004].header.flags: 0000:No Flags Set
 Data[0004].header.format:
 Data[0004].hex: 01 fe fd 00 03 20 00 41 fc 61 01 42 f7 62 01 43
 f2 63 02 44 44 bc 00

Chapter 8. Data Page — Type 0x05

28

 Data[0004].ASCII: A . a . B . b . C
 . c . D D . .

If we ignore the translated header details and concentrate on the data only, we see that it starts
with a control byte. The first byte in the data is always a control byte.

In this case, the byte is positive and has the value 0x01, so the following one byte is to be copied to
the output. The output appears as follows at this point with ASCII characters below hex values,
unprintable characters are shown as a dot:

fe
 .

After the unchanged byte, we have another control byte with value 0xfd which is negative and
represents minus 3. This means that we must repeat the byte following the control byte abs(-3)
times. The data now looks like this:

fe 00 00 00

Again, we have a control byte of 0x03. As this is positive the next 0x03 bytes are copied to the output
unchanged giving us the following:

fe 00 00 00 20 00 41
 A

The next byte is another control byte and as it is negative (0xfc or -4) we repeat the next character 4
times. The data is now:

fe 00 00 00 20 00 41 61 61 61 61
 A a a a a

Repeat the above process of reading a control byte and outputting the appropriate characters
accordingly until we get the following:

fe 00 00 00 20 00 41 61 61 61 61 42 62 62 62 62 62 62 62 62 62 43
 A a a a a B b b b b b b b b b C

63 63 63 63 63 63 63 63 63 63 63 63 63 63 44 44
 c c c c c c c c c c c c c c D D


I’ve had to split the above over a couple of lines to prevent it wandering off the
page when rendered as a PDF file.

Chapter 8. Data Page — Type 0x05

29

We then have another control byte of 0xbc which is -68 and indicates that we need 68 copies of the
following byte (0x00). This is the 'padding' at the end of our actual data (32 bytes in total) to make
up the full 100 bytes of the VARCHAR(100) data type.

You may have noticed that the two consecutive characters ‘DD’ did not get compressed. Compression
only takes place when there are three or more identical characters.

8.4.2. Uncompressed Data

The first record we inserted is 'uncompressed' in that it has no repeating characters. It is
represented internally as follows:

Data[0000].offset: 4064
 Data[0000].length: 30

 Data[0000].header
 Data[0000].header.transaction: 343
 Data[0000].header.back_page: 0
 Data[0000].header.back_line: 0
 Data[0000].header.flags: 0000:No Flags Set
 Data[0000].header.format:
 Data[0000].hex: 01 fe fd 00 0a 08 00 46 69 72 65 62 69 72 64 a4
 00
 Data[0000].ASCII: F i r e b i r d .
 .

The offset indicates where on the page this piece of data is to be found. This value is relative to the
start of the page and is the location of the first byte of the record header.

The length is the size of the compressed data piece and includes the size of the header as well as the
data itself.

In the above, the record header details have been translated into meaningful comments. The data
itself starts at the location labelled “Data[0000].hex:”.

When restoring this data to its original value, the code reads the first byte (0x01) and as this is a
control byte (the first byte is always a control byte) and positive, the following one byte is written to
the output unchanged.

The third bye is a control byte (0xfd) and as this is negative (-3), it means that the next byte is
repeated three times.

Byte 5 (0x0a) is another control byte and indicates that the next 10 bytes are copied unchanged.

Finally, the second to last byte is another control byte (0xa4) and is negative (-92) it indicates that
the final byte (0x00) is to be repeated 92 times.

We can see that even though the actual data could not be compressed, Firebird has managed to
reduce the VARCHAR(100) column to only a few bytes of data.

Chapter 8. Data Page — Type 0x05

30

8.4.3. Null

The final record inserted into the table is the one with no data, it is NULL. The internal storage is as
follows:

Data[0005].offset: 3896
 Data[0005].length: 22

 Data[0005].header
 Data[0005].header.transaction: 345
 Data[0005].header.back_page: 0
 Data[0005].header.back_line: 0
 Data[0005].header.flags: 0000:No Flags Set
 Data[0005].header.format:
 Data[0005].hex: 01 ff 97 00 00 00 00 00 00
 Data[0005].ASCII:

We can see that in the record header, the transaction id is different to the other records we
inserted. This is because we added a COMMIT before we inserted this row.

The NULL data expands from the above to:

ff 00 00 00 <followed by 102 zero bytes>

The first four bytes are the field header, the next 100 zeros are the data in the VARCHAR(100) field
(actually, they are not data as a NULL has no data) and then two padding bytes.

8.4.4. NULL status bitmap

From the above description of how the fields appear when compressed and again, when
uncompressed, we can see that each record is prefixed by a 4 byte (minimum size) NULL status
bitmap. This is an array of bits that define the NULL status of the data in the first 32 fields in the
record. If a table has more than 32 fields, additional bits will be added in groups of 32 at a time. A
record with 33 columns, therefore, will require 64 bits in the array, although 31 of these will be
unused.

As this example table has a single field, only one bit is used in the array to determine the NULL status
of the value in the field, the bit used is bit 0 of the lowest byte (this is a little endian system
remember) of the 4.

The bit is set to indicate NULL (or "there is no field here") and unset to indicate that the data is not-
NULL.

The following example creates a 10 field table and inserts one record with NULL into each field and
one with not-NULL data in each field.

SQL> CREATE TABLE NULLTEST_1(
CON> A0 VARCHAR(1),

Chapter 8. Data Page — Type 0x05

31

CON> A1 VARCHAR(1),
CON> A2 VARCHAR(1),
CON> A3 VARCHAR(1),
CON> A4 VARCHAR(1),
CON> A5 VARCHAR(1),
CON> A6 VARCHAR(1),
CON> A7 VARCHAR(1),
CON> A8 VARCHAR(1),
CON> A9 VARCHAR(1)
CON>);
SQL> COMMIT;

SQL> INSERT INTO NULLTEST_1 (A0,A1,A2,A3,A4,A5,A6,A7,A8,A9)
CON> VALUES (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
SQL> COMMIT;

SQL> INSERT INTO NULLTEST_1 VALUES ('0','1','2','3','4','5','6','7','8','9');
SQL> COMMIT;

I have not shown the process for determining the actual data page for this new table here, but — in
my test database — it works out as being page 172. Dumping page 172 results in the following
output:

tux> ./fbdump ../blank.fdb -p 172

Page Buffer allocated. 4096 bytes at address 0x804c008
Page Offset = 704512l

DATABASE PAGE DETAILS
=====================
 Page Type: 5
 Sequence: 0
 Relation: 133
 Count: 2
 Page Flags: 0: Not an Orphan Page:Page has space:No Large Objects

 Data[0000].offset: 4072
 Data[0000].length: 22

 Data[0000].header
 Data[0000].header.transaction: 460
 Data[0000].header.back_page: 0
 Data[0000].header.back_line: 0
 Data[0000].header.flags: 0000:No Flags Set
 Data[0000].header.format: '' (01)
 Data[0000].hex: 02 ff ff d7 00 00 00 00 00
 Data[0000].ASCII:

 Data[0001].offset: 4012
 Data[0001].length: 57

Chapter 8. Data Page — Type 0x05

32

 Data[0001].header
 Data[0001].header.transaction: 462
 Data[0001].header.back_page: 0
 Data[0001].header.back_line: 0
 Data[0001].header.flags: 0000:No Flags Set
 Data[0001].header.format: '' (01)
 Data[0001].hex: 2b 00 fc 00 00 01 00 30 00 01 00 31 00 01 00 32
 00 01 00 33 00 01 00 34 00 01 00 35 00 01 00 36
 00 01 00 37 00 01 00 38 00 01 00 39
 Data[0001].ASCII: + 0 . . . 1 . . . 2
 . . . 3 . . . 4 . . . 5 . . . 6
 . . . 7 . . . 8 . . . 9

Page Buffer freed from address 0x804c008

Taking the first record where all fields are NULL, we can expand the raw data as follows, we are only
interested in the first 4 bytes:

Data[0000].hex: ff ff 00 00

The first two bytes are showing all bits set. So this indicates that there is NULL data in the first 16
fields, or, that some of the first 16 fields have NULL data and the remainder are not actually present.

Looking at the not-NULL record next, the first 4 bytes expand as follows:

Data[0001].hex: 00 fc 00 00

Again, only the first 4 bytes are of any interest. This time we can see that all 8 bits in the first byte
and bits 0 and 1 of the second byte are unset. Bits 3 to 7 of the second byte show that these fields are
not present (or are NULL!) by being set.

Next, we will attempt to see what happens when a table with more than 32 fields is created. In this
case, I’m using a record with 40 columns.

SQL> CREATE TABLE NULLTEST_2(
CON> A0 VARCHAR(1), A1 VARCHAR(1), A2 VARCHAR(1), A3 VARCHAR(1),
CON> A4 VARCHAR(1), A5 VARCHAR(1), A6 VARCHAR(1), A7 VARCHAR(1),
CON> A8 VARCHAR(1), A9 VARCHAR(1), A10 VARCHAR(1), A11 VARCHAR(1),
CON> A12 VARCHAR(1), A13 VARCHAR(1), A14 VARCHAR(1), A15 VARCHAR(1),
CON> A16 VARCHAR(1), A17 VARCHAR(1), A18 VARCHAR(1), A19 VARCHAR(1),
CON> A20 VARCHAR(1), A21 VARCHAR(1), A22 VARCHAR(1), A23 VARCHAR(1),
CON> A24 VARCHAR(1), A25 VARCHAR(1), A26 VARCHAR(1), A27 VARCHAR(1),
CON> A28 VARCHAR(1), A29 VARCHAR(1), A30 VARCHAR(1), A31 VARCHAR(1),
CON> A32 VARCHAR(1), A33 VARCHAR(1), A34 VARCHAR(1), A35 VARCHAR(1),
CON> A36 VARCHAR(1), A37 VARCHAR(1), A38 VARCHAR(1), A39 VARCHAR(1)
CON>);

Chapter 8. Data Page — Type 0x05

33

SQL> COMMIT;

SQL> INSERT INTO NULLTEST_2 (
CON> A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,
CON> A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,
CON> A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,
CON> A30,A31,A32,A33,A34,A35,A36,A37,A38,A39
CON>)
CON> VALUES (
CON> NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
CON> NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
CON> NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
CON> NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
CON>);

SQL> INSERT INTO NULLTEST_2 VALUES (
CON> '0','1','2','3','4','5','6','7','8','9',
CON> '0','1','2','3','4','5','6','7','8','9',
CON> '0','1','2','3','4','5','6','7','8','9',
CON> '0','1','2','3','4','5','6','7','8','9'
CON>);
SQL> COMMIT;

Once again, the test data is a simple pair of records, one with all NULLs and the other with all not-
NULL columns. The first record, all NULLs, dumps out as follows:

Data[0000].hex: fb ff 80 00 de 00 00 00 00

Decompressing the above, gives the following

Data[0000].hex: ff ff ff ff ff 00 00 00 00 00

It is difficult to tell from the all NULL record where the NULL bitmap array ends and the real data
begins, it’s easier in the not-NULL record as shown below, however, the first 8 bytes are the
interesting ones. We have defined the record with more than 32 fields, so we need an additional 4
bytes in the bitmap, not just 'enough to hold all the bits we need'.

The not-NULL record’s data is held internally as:

Data[0001].hex: f8 00 7f 01 00 30 00 01 00 31 00 01 00 32 00 01
 00 33 00 01 00 34 00 01 00 35 00 01 00 36 00 01
 00 37 00 01 00 38 00 01 00 39 00 01 00 30 00 01
 00 31 00 01 00 32 00 01 00 33 00 01 00 34 00 01
 00 35 00 01 00 36 00 01 00 37 00 01 00 38 00 01
 00 39 00 01 00 30 00 01 00 31 00 01 00 32 00 01
 00 33 00 01 00 34 00 01 00 35 00 01 00 36 00 01
 00 37 00 01 00 38 00 01 00 39 00 01 00 30 00 01

Chapter 8. Data Page — Type 0x05

34

 00 31 20 00 01 00 32 00 01 00 33 00 01 00 34 00
 01 00 35 00 01 00 36 00 01 00 37 00 01 00 38 00
 01 00 39

And this expands out to the following, where again,. we only need to look at the first 8 bytes:

Data[0001].hex: 00 00 00 00 00 00 00 00 01 00 30 00 01 00 31 00

Again, this makes it difficult to determine where the data starts and where the bitmap ends because
of all the zero bytes present at the start of the record, so a sneaky trick would be to insert a NULL in
the first and last columns and dump that out. This results in the following, when expanded:

Data[0002].hex: 01 00 00 00 80 00 00 00 00 00 00 00 01 00 31 00

The first field in the record is NULL and so is the 40th. The bit map now shows that bit 0 of the first
byte is set indicating NULL and so is bit 7 of the fifth byte. Five bytes equals 40 bits and each field has
a single bit, so our number of bits matches up to the number of fields in each record.

Chapter 8. Data Page — Type 0x05

35

Chapter 9. Index Root Page — Type 0x06
Every table in the database has an Index Root Page which holds data that describes the indexes for
that table. Even tables that have no indices defined have an index root page.

The C code representation of an index root page is:

struct index_root_page
{
 pag irt_header;
 USHORT irt_relation;
 USHORT irt_count;
 struct irt_repeat {
 SLONG irt_root;
 union {
 float irt_selectivity;
 SLONG irt_transaction;
 } irt_stuff;
 USHORT irt_desc;
 UCHAR irt_keys;
 UCHAR irt_flags;
 } irt_rpt[1];
};

irt_header

The page starts with a standard page header. The flags byte — pag_flags — is not used on this
page type.

irt_relation

Two bytes, unsigned. Offset 0x10 on the page. The relation id. This is the value of
RDB$RELATIONS.RDB$RELATION_ID.

irt_count

Two bytes, unsigned. Offset 0x12 on the page. The number of indices defined for this table. If
there are no indices defined this counter will show the value zero. (Every table in the database
has an Index Root Page regardless of whether or not it has any indices defined.)

irt_rpt

This is an array of index descriptors. The array begins at offset 0x14 on the page with the
descriptor for the first index defined for the table. Descriptors are added to the 'top' of the array,
so the next index defined will have its descriptor at a higher page address than the previous
descriptor. The descriptor entries consist of the following 6 fields (irt_root through irt_flags).
Each descriptor is 0x0b bytes long.

irt_root

Four bytes, signed. Offset 0x00 in each descriptor array entry. This field is the page number
where the root page for the individual index (page type 0x07) is located.

Chapter 9. Index Root Page — Type 0x06

36

irt_selectivity

Four bytes, signed floating-point. Offset 0x04 in each descriptor array entry. This is the same
offset as for irt_transaction below. In ODS versions previous to 11.0 this field holds the index
selectivity in floating-point format.


From ODS version 11.0, this field is no longer used as selectivity has been
moved to the index field descriptors (see below).

irt_transaction

Four bytes, signed. Offset 0x04 in each descriptor array entry — the same offset as
irt_selectivity above. Normally this field will be zero but if an index is in the process of
being created, the transaction id will be found here.

irt_desc

Two bytes, unsigned. Offset 0x08 in each descriptor array entry. This field holds the offset,
from the start of the page, to the index field descriptors which are located at the bottom end
(ie, highest addresses) of the page. To calculate the starting address, add the value in this field
to the address of the start of the page.

irt_keys

One byte, unsigned. Offset 0x0a in each descriptor array entry. This defines the number of
keys (columns) in this index.

irt_flags

One byte, unsigned. Offset 0x0b in each descriptor array entry. The flags define various
attributes for this index, these are encoded into various bits in the field, as follows:

Bit 0 Index is unique (set) or not (unset).

Bit 1 Index is descending (set) or ascending (unset).

Bit 2 Index [creation?] is in progress (set) or not (unset).

Bit 3 Index is a foreign key index (set) or not (unset).

Bit 4 Index is a primary key index (set) or not (unset).

Bit 5 Index is expression based (set) or not (unset).

Each descriptor entry in the array holds an offset to a list of key descriptors. These start at the
highest address on the page and extend towards the lowest address. (The array of index descriptors
(irt_rpt) starts at a low address on the page and increases upwards. At some point, they will meet,
and the page will be full.

The index field descriptors are defined as follows:

irtd_field

Two bytes, unsigned. Offset 0x00 in each field descriptor. This field defines the field number of
the table that makes up 'this' field in the index. This number is equivalent to

Chapter 9. Index Root Page — Type 0x06

37

RDB$RELATION_FIELDS.RDB$FIELD_ID.

irtd_itype

Two bytes, unsigned. Offset 0x02 in each field descriptor. This determines the data type of the
appropriate field in the index. The allowed values in this field are:

0 field is numeric, but is not a 64 bit integer.

1 field is string data.

3 Field is a byte array.

4 Field is metadata.

5 Field is a date.

6 Field is a time.

7 Field is a timestamp.

8 field is numeric — and is a 64 bit integer.

You may note from the above that an irtd_itype with value 2 is not permitted.

irtd_selectivity

Four bytes, floating point format. Offset 0x04 in each field descriptor. This field holds the
selectivity of this particular column in the index. This applies to ODS 11.0 onwards. In pre ODS
11.0 databases, this field is not part of the index field descriptors and selectivity is applied to the
index as a whole. See irt_selectivity above.

The following commands have been executed to create a parent child set of two tables and a
selection of indices:

SQL> CREATE TABLE PARENT (
CON> ID INTEGER NOT NULL,
CON> EMAIL VARCHAR(150)
CON>);

SQL> ALTER TABLE PARENT
CON> ADD CONSTRAINT PK_PARENT
CON> PRIMARY KEY (ID);

SQL> ALTER TABLE PARENT
CON> ADD CONSTRAINT UQ_EMAIL
CON> UNIQUE (EMAIL);

SQL> COMMIT;

SQL> CREATE TABLE CHILD (
CON> ID INTEGER NOT NULL,
CON> PARENT_ID INTEGER,

Chapter 9. Index Root Page — Type 0x06

38

CON> STUFF VARCHAR(200)
CON>);

SQL> ALTER TABLE CHILD
CON> ADD CONSTRAINT FK_CHILD
CON> FOREIGN KEY (PARENT_ID)
CON> REFERENCES PARENT (ID);

SQL> COMMIT;

The Following command was then executed to extract the index root pages for both of these tables:

SQL> SELECT R.RDB$RELATION_NAME,
CON> R.RDB$RELATION_ID,
CON> P.RDB$PAGE_TYPE,
CON> P.RDB$PAGE_NUMBER
CON> FROM RDB$RELATIONS R
CON> JOIN RDB$PAGES P ON (P.RDB$RELATION_ID = R.RDB$RELATION_ID)
CON> WHERE R.RDB$RELATION_NAME IN ('PARENT','CHILD')
CON> AND P.RDB$PAGE_TYPE = 6;

RDB$RELATION_NAME RDB$RELATION_ID RDB$PAGE_TYPE RDB$PAGE_NUMBER
================= =============== ============= ===============
PARENT 139 6 173
CHILD 140 6 178

Now that the root pages are known, we can take a look at the layout of these two pages and see how
the details of the various indices are stored internally:

tux> ./fbdump ../blank.fdb -p 173,178

FBDUMP 1.00 - Firebird Page Dump Utility

Parameters : -p 173,178 -v
Database: ../blank.fdb

DATABASE PAGE DETAILS - Page 173
 Page Type: 6
 Flags: 0
 Checksum: 12345
 Generation: 5
 SCN: 0
 Reserved: 0
PAGE DATA
 Relation: 139
 Index Count: 2

 Root Page[0000]: 174
 Transaction[0000]: 0

Chapter 9. Index Root Page — Type 0x06

39

 Descriptor[0000]: 4088 (0x0ff8)
 Keys[0000]: 1
 Flags[0000]: 17 :Unique:Ascending:Primary Key:
 Descriptor[0000].Field: 0
 Descriptor[0000].Itype: 0 :Numeric (Not BigInt)
 Descriptor[0000].Selectivity: 0.000000

 Root Page[0001]: 176
 Transaction[0001]: 0
 Descriptor[0001]: 4080 (0x0ff0)
 Keys[0001]: 1
 Flags[0001]: 1 :Unique:Ascending:
 Descriptor[0001].Field: 1
 Descriptor[0001].Itype: 1 :String
 Descriptor[0001].Selectivity: 0.000000

DATABASE PAGE DETAILS - Page 178
PAGE HEADER
 Page Type: 6
 Flags: 0
 Checksum: 12345
 Generation: 3
 SCN: 0
 Reserved: 0
PAGE DATA
 Relation: 140
 Index Count: 1

 Root Page[0000]: 180
 Transaction[0000]: 0
 Descriptor[0000]: 4088 (0x0ff8)
 Keys[0000]: 1
 Flags[0000]: 8 :NonUnique:Ascending:Foreign Key:
 Descriptor[0000].Field: 1
 Descriptor[0000].Itype: 0 :Numeric (Not BigInt)
 Descriptor[0000].Selectivity: 0.000000

We can see that the PARENT table (relation 139) has two defined indices while the CHILD table
(relation 140) has one.

If we examine the above output we can see that the indices do match up to those that were created
above. We can also see that in the event of an index being created without a sort order (ascending
or descending) that the default is ascending.

Chapter 9. Index Root Page — Type 0x06

40

Chapter 10. Index B-Tree Page — Type
0x07 — YOU ARE HERE.
As described above for the Index Root Page (type 0x06) each index defined for a table has a root
page from which the index data can be read etc. The Index Root Page field irt_root points to the
first page (the root page — just to confuse matters slightly) in the index. That page will be a type
0x07 Index B-Tree Page, as will all the other pages that make up this index.

Indices do not share pages. Each index has its own range of dedicated pages in the database. Pages
are linked to the previous and next pages making up this index.

10.1. B-Tree Header
The C code representation of an ODS 11 index b-tree page is:

struct btree_page
{
 pag btr_header;
 SLONG btr_sibling;
 SLONG btr_left_sibling;
 SLONG btr_prefix_total;
 USHORT btr_relation;
 USHORT btr_length;
 UCHAR btr_id;
 UCHAR btr_level;
};

btr_header

The page starts off with a standard page header. The pag_flags byte is used on these pages. The
bits used and why are:

Bit 0 set means do not garbage collect this page.

Bit 1 set means this page is not propogated upwards.

Bit 3 set means that this page/bucket is part of a descending index.

Bit 4 set means that non-leaf nodes will contain record number information.

Bit 5 set means that large keys are permitted/used.

Bit 6 set means that the page contains index jump nodes.

btr_sibling

Four bytes, signed. Bytes 0x10 - 0x13 on the page. This is the page number of the next page of this
index. The values on the next page are higher than all of those on this page. A value of zero here
indicates that this is the final page in the index.

Chapter 10. Index B-Tree Page — Type 0x07 — YOU ARE HERE.

41

btr_left_sibling

Four bytes, signed. Bytes 0x14 - 0x17 on the page. This is the page number of the previous page
of this index. The values on the previous page are lower than all of those on this page. A value of
zero here indicates that this is the first page in the index.

btr_prefix_total

Four bytes, signed. Bytes 0x18 - 0x1b on the page. The sum of all the bytes saved on this page by
using prefix compression.

btr_relation

Two bytes, unsigned. Bytes 0x1c and 0x1d on the page. The relation id (RDB$RELATION_ID in
RDB$RELATIONS) for the table that this index applies to.

btr_length

Two bytes, unsigned. Bytes 0x1e and 0x1f on the page. The number of bytes used, for data, on
this page. Acts as an offset to the first unused byte on the page.

btr_id

One byte, unsigned. Byte 0x20 on the page. The index id (RDB$INDEX_ID in RDB$INDICES) for this
index.

btr_level

One byte, unsigned. Byte 0x21 on the page. The index level. Level zero indicates a leaf node.

10.2. Index Jump Info
Following on from the above, at byte 0x22 on the page, is an Index Jump Info structure. This is
defined as follows:

struct IndexJumpInfo
{
 USHORT firstNodeOffset;
 USHORT jumpAreaSize;
 UCHAR jumpers;
};

firstNodeOffset

Two bytes, unsigned. Offset 0x00 in the structure. This is the offset, in bytes, to the first of the
Index Nodes (see below) on this page.

jumpAreaSize

Two bytes, unsigned. Offset 0x02 in the structure. The value here is the number of bytes left to
be used before we have to create a new jump node.

jumpers

One byte, unsigned. Offset 0x05 in the structure. The running total of the current number of
Jump Nodes on this page. There can be a maximum of 255 Index Jump Nodes on a page.

Chapter 10. Index B-Tree Page — Type 0x07 — YOU ARE HERE.

42

10.3. Index Jump Nodes
The Index Jump Info structure described above is followed by zero or more Index Jump Nodes. The
number to be found is determined by the jumpers value in the Index Jump Info structure. Index
Jump Nodes are defined as follows:

struct IndexJumpNode
{
 UCHAR* nodePointer; // pointer to where this node can be read from the page
 USHORT prefix; // length of prefix against previous jump node
 USHORT length; // length of data in jump node (together with prefix this is
prefix for pointing node)
 USHORT offset; // offset to node in page
 UCHAR* data; // Data can be read from here
};

10.4. Index Nodes
btr_nodes

Index nodes are described below and are used to hold the data for one entry in this index. The C
code representation of an entry in the array is:

struct btree_nod
{
 UCHAR btn_prefix;
 UCHAR btn_length;
 UCHAR btn_number[4];
 UCHAR btn_data[1];
};

btn_prefix

One byte, unsigned. Byte 0x00 in the node. This is the size of the compressed prefix.

btn_length

One byte, unsigned. Byte 0x01 in the node. This is the size of the data in the index entry.

btn_number

Four bytes, unsigned. Bytes 0x02 - 0x05 in the node. The page number (or record number)
where the data that this index entry represents, is to be found.

10.5. Index Data
btn_data

The data that makes up the index entry is found at bytes 0x06 onwards in the node.

Chapter 10. Index B-Tree Page — Type 0x07 — YOU ARE HERE.

43

Following the Index Root Page example, we can now hexdump and inspect the Primary Key index
for our example table. We see from the Index Root page that the actual root of the index is on page
0x0513eb in the database. A dump of that page results in the following:

513eb000 07 70 39 30 02 00 00 00 00 00 00 00 00 00 00 00 Standard header
513eb010 00 00 00 00 btr_sibling
513eb014 00 00 00 00 btr_left_sibling
513eb018 1f 00 00 00 btr_prefix_total
513eb01c d5 00 btr_relation
513eb01e a6 00 btr_length
513eb020 00 btr_id
513eb021 02 btr_level

This looks like it is the final page in this particular index as it has no siblings, left or right. There
also doesn’t appear to be much space used on the page as btr_length is showing that only 0xa6 bytes
have been used on this page, however, btr_level is 2 so we are not looking at a leaf node. (And we
know that this is actually the root node for the entire index since the page we dumped is the root
page for the index.)

Following on from the above, we have the various index nodes, starting at offset 0x22, as follows:

to be completed soon!

Chapter 10. Index B-Tree Page — Type 0x07 — YOU ARE HERE.

44

Chapter 11. Blob Data Page — Type
0x08 — TODO
The C code representation of a blob data page is:

struct blob_page
{
 pag blp_header;
 SLONG blp_lead_page;
 SLONG blp_sequence;
 USHORT blp_length;
 USHORT blp_pad;
 SLONG blp_page[1];
};

blp_header

The blob page starts off with a standard page header.

blp_lead_page

Four bytes, signed. Bytes 0x10 - 0x13. This field holds the page number for the first page for this
blob.

blp_sequence

Four bytes, signed. Bytes 0x14 - 0x17. The sequence number of this page within the page range
for this blob.

blp_length

Two bytes, unsigned. Bytes 0x18 and 0x19. The length of the blob data on this page, in bytes.

blp_pad

Two bytes, unsigned. Bytes 0x1a and 0x1b. Not used for any data, used as padding.

blp_page

This location in the page is at byte 0x1c. It has two purposes:

• An array of four byte, signed page numbers representing all the pages in this blob; or

• An array of bytes making up the blob data on this page.

If the flag byte in the standard page header (pag_flags) is set to 1, this blob page contains no data
but acts as a pointer page to all the other blob pages for this particular blob.

Chapter 11. Blob Data Page — Type 0x08 — TODO

45

Chapter 12. Generator Page — Type 0x09
Every database has at least one Generator Page, even if no generators (also known as sequences in
Firebird 2.x) have been defined by the user. A blank database consisting only of system tables and
indices already has a number of generators created for use in naming constraints, indices, etc.


GENERATOR is a non standard term that originated in Interbase. The ISO SQL
standard requires the term SEQUENCE instead.

The C code representation of the generator page is:

struct generator_page
{
 pag gpg_header;
 SLONG gpg_sequence;
 SLONG gpg_waste1;
 USHORT gpg_waste2;
 USHORT gpg_waste3;
 USHORT gpg_waste4;
 USHORT gpg_waste5;
 SINT64 gpg_values[1];
};

gpg_header

The generator page starts off with a standard page header.

gpg_sequence

Four bytes, signed. Bytes 0x10 - 0x13. The sequence number of this generator page, starting from
zero. If so many generators have been created that new generator pages are required, the
sequence number will be incremented for each one.

gpg_waste

Twelve bytes. Bytes 0x14 to 0x1f. To quote the source code, these values are overhead carried
forward for backward compatibility. In other words, most likely unused.

gpg_values

An array of 64 bit values, one for each generator in the database.

If we use isql to create a new blank database, we can dump out the generator page as follows:

tux> isql
Use CONNECT or CREATE DATABASE to specify a database

SQL> CREATE DATABASE "../blank2.fdb";
SQL> COMMIT;
SQL> EXIT;

Chapter 12. Generator Page — Type 0x09

46

We need to find the generator page next:

SQL> SELECT RDB$PAGE_NUMBER
CON> FROM RDB$PAGES
CON> WHERE RDB$PAGE_TYPE = 9;

RDB$PAGE_NUMBER
===============
 148

SQL> COMMIT;

Now we can dump out the generator page:

tux> ./fbdump ../blank2.fdb -p 148

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 148
 Page Type: 9
PAGE DATA
 Sequence: 0
 Waste1: 0
 Waste2: 0
 Waste3: 0
 Waste4: 0
 Waste5: 0

 There are 9 sequences defined:

 Sequence[00000]: 9
 Sequence[00001]: 0
 Sequence[00002]: 3
 Sequence[00003]: 0
 Sequence[00004]: 0
 Sequence[00005]: 0
 Sequence[00006]: 0
 Sequence[00007]: 0
 Sequence[00008]: 0
 Sequence[00009]: 0

The system table RDB$GENERATORS holds the defined sequence details but no values for each one. It
does have an RDB$GENERATOR_ID column and this starts from 1, not zero. And increments by 1 for
each new sequence. Where does this number come from?

Looking in the blank database we created, we can see that there are 9 sequences created for system
use:

Chapter 12. Generator Page — Type 0x09

47

SQL> SELECT RDB$GENERATOR_ID, RDB$GENERATOR_NAME
CON> FROM RDB$GENERATORS
CON> ORDER BY RDB$GENERATOR_ID;

RDB$GENERATOR_ID RDB$GENERATOR_NAME
================ ==================
 1 RDB$SECURITY_CLASS
 2 SQL$DEFAULT
 3 RDB$PROCEDURES
 4 RDB$EXCEPTIONS
 5 RDB$CONSTRAINT_NAME
 6 RDB$FIELD_NAME
 7 RDB$INDEX_NAME
 8 RDB$TRIGGER_NAME
 9 RDB$BACKUP_HISTORY

This is a clue, take a look at Sequence[00000], above, and see that it contains the value 9. I suspect
therefore, that the very first sequence is used to generate the RDB$GENERATOR_ID value when a new
sequence is created. One way to find out is to create a new sequence.

SQL> CREATE SEQUENCE NEW_GENERATOR;
SQL> SET GENERATOR NEW_GENERATOR TO 666;
SQL> COMMIT;

SQL> SELECT RDB$GENERATOR_ID, RDB$GENERATOR_NAME
CON> FROM RDB$GENERATORS
CON> WHERE RDB$GENERATOR_ID > 9;

RDB$GENERATOR_ID RDB$GENERATOR_NAME
================ ==================
 10 NEW_GENERATOR

So far, so good, we see a new sequence. Time to hexdump the database file’s generator page again:

tux> ./fbdump ../blank2.fdb -p 148

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 148
 Page Type: 9
PAGE DATA
 ...

 There are 10 sequences defined:

 Sequence[00000]: 10
 Sequence[00001]: 0
 Sequence[00002]: 3

Chapter 12. Generator Page — Type 0x09

48

 Sequence[00003]: 0
 Sequence[00004]: 0
 Sequence[00005]: 0
 Sequence[00006]: 0
 Sequence[00007]: 0
 Sequence[00008]: 0
 Sequence[00009]: 0
 Sequence[00010]: 666

We can see that Sequence[00010], that a new sequence has been created. The value in this sequence
is 666 in decimal. In addition, we can see that Sequence[00000] has increased to 10. So it looks
remarkably like the RDB$GENERATOR_ID is itself obtained from a sequence that never appears in
RDB$GENERATORS.

The value, stored in Sequence[n], appears to be the last value that was used and not the next value
to be issued. It is also the total number of sequences that have been created thus far in the
database, provided, that the value in gpg_sequence is zero.

I wonder what happens when we drop a sequence?

SQL> DROP SEQUENCE NEW_GENERATOR;
SQL> COMMIT;

SQL> SELECT RDB$GENERATOR_ID, RDB$GENERATOR_NAME
CON> FROM RDB$GENERATORS
CON> WHERE RDB$GENERATOR_ID > 9;

SQL>

We can see that the sequence is dropped from the RDB$GENERATORS table, what about in the generator
page in the database?

tux> ./fbdump ../blank2.fdb -p 148

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 148
 Page Type: 9
PAGE DATA
 ...

 There are 10 sequences defined:

 Sequence[00000]: 10
 Sequence[00001]: 0
 Sequence[00002]: 3
 Sequence[00003]: 0
 Sequence[00004]: 0

Chapter 12. Generator Page — Type 0x09

49

 Sequence[00005]: 0
 Sequence[00006]: 0
 Sequence[00007]: 0
 Sequence[00008]: 0
 Sequence[00009]: 0
 Sequence[00010]: 666

The generator page has not changed. Sequence[00010] still remains at its previous
value — 666 — but this 64 bits of database page representing our recently dropped sequence can
never be used again. It has ceased to be a sequence and has become wasted space.

Given that RDB$GENERATOR_ID is itself generated from Sequence[00000] and cannot therefore reuse any
allocated RDB$GENERATOR_ID, it is not surprising that the simplest way of handling a dropped
sequence is simply to ignore it.

If you are creating and dropping sequences frequently, you may end up with a lot of unused
sequences. You can restore these to a usable state by dumping and restoring the database:

tux> # Shutdown & backup the database...
tux> gfix -shut -tran 60 ../blank2.fdb
tux> gbak -backup ../blank2.fdb ./blank2.fbk

tux> # Replace (!) and restart the database...
tux> gbak -replace ./blank2.fbk ../blank2.fdb



The above will cause the loss of the database if anything goes wrong. The
commands used overwrite the blank2.fdb database from the dumpfile. If the
dumpfile is corrupt, then we will lose the database as the recovery starts by wiping
the database.

If we now dump the generator page as before, we see the following:

> ./fbdump ../blank2.fdb -p 148

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 148
 Page Type: 9
PAGE DATA
 ...

 There are 9 sequences defined:

 Sequence[00000]: 9
 Sequence[00001]: 0
 Sequence[00002]: 3
 Sequence[00003]: 0
 Sequence[00004]: 0

Chapter 12. Generator Page — Type 0x09

50

 Sequence[00005]: 0
 Sequence[00006]: 0
 Sequence[00007]: 0
 Sequence[00008]: 0
 Sequence[00009]: 0

We now see that the deleted sequence has gone, and the value in Sequence[00000] has reduced by
one (the number of deleted sequences) to suit. If we now create a brand new sequence, it will reuse
the slot previously occupied by our deleted sequence.

SQL> CREATE SEQUENCE ANOTHER_SEQUENCE;
SQL> COMMIT;

Dumping the generator page again, we see:

tux> ./fbdump ../blank2.fdb -p 148

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 148
 Page Type: 9
PAGE DATA
 ...

 There are 10 sequences defined:

 Sequence[00000]: 10
 Sequence[00001]: 0
 Sequence[00002]: 3
 Sequence[00003]: 0
 Sequence[00004]: 0
 Sequence[00005]: 0
 Sequence[00006]: 0
 Sequence[00007]: 0
 Sequence[00008]: 0
 Sequence[00009]: 0
 Sequence[00010]: 0

Bearing in mind that in ODS 11 onwards, a sequence is a 64 bit value, how many sequences can we
store on a page? The answer will be (page size - 32 bytes)/8 and we are allowed a maximum of
32,767 sequences in any one database. With a 4K page size this would mean sequence 508 would be
the first on the next page.

Because there is no apparent next and previous page numbers on a generator page, how does the
database know where to find the actual page that the generator values are stored on? RDB$PAGES is a
system table that the main database header page holds the page number for. This allows the
system, on startup, to determine where its internal data can be found. For because sequences live,

Chapter 12. Generator Page — Type 0x09

51

as it were, in RDB$GENERATORS we can look in RDB$PAGES as follows, to find the actual page number(s):

SQL> SELECT *
CON> FROM RDB$PAGES
CON> WHERE RDB$PAGE_TYPE = 9;

RDB$PAGE_NUMBER RDB$RELATION_ID RDB$PAGE_SEQUENCE RDB$PAGE_TYPE
=============== =============== ================= =============
 148 0 0 9

The RDB$RELATION_ID is zero because this is not actually the location of a relation (table) in the
database itself, but the location of a specific page that we are after. Given that RDB$PAGE_SEQUENCE = 0
and RDB$PAGE_TYPE = 9 we see that the first generator page is located on page 148 of the database.

If there are more than one page, then the page that has gpg_sequence set to zero is the first one and
the first sequence on that page is the count of all sequences created (and possibly deleted) within
the database. If the gpg_sequence is non-zero, then there is no way to tell how many sequences on
that page are actually valid and even when the gpg_sequence is zero, unless the database has been
restored since any sequences were last deleted, it is not possible to determine which sequences on
the page are still valid. (Unless you have access to the RDB$GENERATOR_ID in RDB$GENERATORS of course.)

12.1. Creating Lots Of Sequences
When you create a new blank database, the first generator page is created as part of the new
database. It has to be this way because there are nine system sequences created, as described
above. (Well, there are 10 actually, but no-one has access to the first one!)

When the user starts creating new sequences, they will be added to the existing generator page.
However, once a new page is required things change!

Given that there can be 508 sequences, in total, on a single 4 Kb database page, then when sequence
509 is created a new page — of type 0x09 — will be required. If the new sequence is not given an
initial value, then the new page is not created yet. An entry will be created in RDB$PAGES with
RDB$PAGE_SEQUENCE set correctly (to match what will be in the gpg_sequence field in the page
structure when it is finally created) and a new sequence will be stored in RDB$GENERATORS, but
nothing will happen to extend the database with the required new page until such time as either:

• The sequence value is read within a transaction; or

• The sequence number is explicitly set to a new value.

It is only now that the required generator page is actually created and written to the (end of) the
database file. The following explains the sequence of events that take place when a brand new
blank database is extended by the creation of an additional 5,000 sequences.

1. A blank database has 10 pre-created sequences used internally — nine are visible in
RDB$GENERATORS, one is hidden. A generator page exists and the details can be found in RDB$PAGES.
Page 148 is the first generator page in a 4 Kb page size database. The database file is 161 pages
long (659,456 bytes).

Chapter 12. Generator Page — Type 0x09

52

tux> isql
Use CONNECT or CREATE DATABASE to specify a database

SQL> CREATE DATABASE 'seq.fdb';

SQL> SHELL;

tux> ls -l seq.fdb
-rw------- 1 firebird firebird 659456 2010-05-12 11:26 seq.fdb

tux> exit

SQL> SELECT RDB$GENERATOR_ID,
CON> RDB$GENERATOR_NAME
CON> FROM RDB$GENERATORS
CON> ORDER BY RDB$GENERATOR_ID;

RDB$GENERATOR_ID RDB$GENERATOR_NAME
================ ==================
 1 RDB$SECURITY_CLASS
 2 SQL$DEFAULT
 3 RDB$PROCEDURES
 4 RDB$EXCEPTIONS
 5 RDB$CONSTRAINT_NAME
 6 RDB$FIELD_NAME
 7 RDB$INDEX_NAME
 8 RDB$TRIGGER_NAME

SQL> SELECT *
CON> FROM RDB$PAGES
CON> WHERE RDB$PAGE_TYPE = 9;

RDB$PAGE_NUMBER RDB$RELATION_ID RDB$PAGE_SEQUENCE RDB$PAGE_TYPE
=============== =============== ================= =============
 148 0 0 9

SQL> COMMIT;

2. The user creates a set of 5,000 new sequences. The database extends to accommodate the data
being written into the system table RDB$GENERATORS, but there are no new generator pages
written. The database is now 256 pages long (1,048,576 bytes).

RDB$PAGES still shows that page 148 is the only generator page in the database.

SQL> INPUT gens.sql;

SQL> SELECT *
CON> FROM RDB$PAGES

Chapter 12. Generator Page — Type 0x09

53

CON> WHERE RDB$PAGE_TYPE = 9;

RDB$PAGE_NUMBER RDB$RELATION_ID RDB$PAGE_SEQUENCE RDB$PAGE_TYPE
=============== =============== ================= =============
 148 0 0 9

SQL> SHELL;

tux> ls -l seq.fdb
-rw------- 1 firebird firebird 1048576 2010-05-12 11:28 seq.fdb

tux> exit

3. A transaction touches the final sequence — which has RDB$GENERATOR_ID = 5,009 — by reading its
value (without changing it). At this point a new generator page is created and written to the
database. The page has gpg_sequence set to 9, which is the correct page for sequence number
5,009. The database is now 257 pages in size (1052672 bytes).

SQL> SELECT RDB$GENERATOR_ID,RDB$GENERATOR_NAME
CON> FROM RDB$GENERATORS
CON> WHERE RDB$GENERATOR_ID = (
CON> SELECT MAX(RDB$GENERATOR_ID)
CON> FROM RDB$GENERATORS
CON>);

RDB$GENERATOR_ID RDB$GENERATOR_NAME
================ ==================
 5009 RANDOM_SEQ_4994

SQL> SELECT GEN_ID(RANDOM_SEQ_4994, 0)
CON> FROM RDB$DATABASE;

 GEN_ID
=====================
 0

SQL> SHELL;

tux> ls -l seq.fdb
-rw------- 1 firebird firebird 1052672 2010-05-12 11:33 seq.fdb

tux> exit

RDB$PAGES shows that there are now two pages in the database with type 9. The original page 148
and a new page 256. Looking at the database file itself, however, shows that it is actually 257
pages long. Page 257, the last page, has page type zero — which is not a defined page type and,
doesn’t appear in RDB$PAGES.

Chapter 12. Generator Page — Type 0x09

54

SQL> SELECT *
CON> FROM RDB$PAGES
CON> WHERE RDB$PAGE_TYPE = 9
CON> OR RDB$PAGE_NUMBER = 257;

RDB$PAGE_NUMBER RDB$RELATION_ID RDB$PAGE_SEQUENCE RDB$PAGE_TYPE
=============== =============== ================= =============
 148 0 0 9
 256 0 9 9

SQL> SHELL;

tux> ./fbdump seq.fdb -p 257

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 257
 Page Type: 0

The RDB$PAGE_SEQUENCE in RDB$PAGES for the new page, page 256, is set to 9 which corresponds to
the gpg_sequence number in the actual page.

tux> ./fbdump seq.fdb -p 256

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 256
 Page Type: 9
PAGE DATA
 Sequence: 9
...

4. A separate transaction changes the value of the sequence with RDB$GENERATOR_ID = 520, which is
to be found on the second page of sequences. This page doesn’t yet exist and is created with
page number 257. Looking at RDB$PAGES shows that this new page exists in the database. The
database file has extended now to 258 pages or 1,056,768 bytes.

The sequence in question, however, still has the value zero. (The transaction has yet to commit.)

SQL> SELECT RDB$GENERATOR_NAME
CON> FROM RDB$GENERATORS
CON> WHERE RDB$GENERATOR_ID = 520;

RDB$GENERATOR_NAME
==================
RANDOM_SEQ_534

SQL> SET GENERATOR RANDOM_SEQ_534 TO 666;

Chapter 12. Generator Page — Type 0x09

55

SQL> SELECT *
CON> FROM RDB$PAGES
CON> WHERE RDB$PAGE_TYPE = 9;

RDB$PAGE_NUMBER RDB$RELATION_ID RDB$PAGE_SEQUENCE RDB$PAGE_TYPE
=============== =============== ================= =============
 148 0 0 9
 256 0 9 9
 257 0 1 9

SQL> SHELL;

tux> ls -l seq.fdb
-rw------- 1 firebird firebird 1056768 2010-05-12 13:07 seq.fdb

tux> ./fbdump seq.fdb -p 257

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 257
 Page Type: 9
PAGE DATA
 Sequence: 1
 Waste1: 0
 Waste2: 0
 Waste3: 0
 Waste4: 0
 Waste5: 0

 This is not the first generator page.
 Total generator count unknown.
 There are [a maximum of] 508 sequences located on this page.

 Sequence[00508]: 0
 ...
 Sequence[00520]: 0
 ...

Only after a commit does the sequence takes the new value of 666.

tux> exit

SQL> COMMIT;

SQL> SHELL;

tux> ./fbdump seq.fdb -p 257

FBDUMP 1.00 - Firebird Page Dump Utility

Chapter 12. Generator Page — Type 0x09

56

 ...
 Sequence[00520]: 666
 ...

Chapter 12. Generator Page — Type 0x09

57

Chapter 13. Write Ahead Log Page — Type
0x0a
Every database has one Write Ahead Log page (WAL) which is currently always located at page 2.



Discussions have taken place on the Firebird development mailing list on
removing this page altogether as it is not used and simply wastes space that could
be better used elsewhere. From Firebird 3.0 it is likely there will not be a WAL
page in any new databases.

The C code representation of the WAL page is:

struct log_info_page
{
 pag log_header;
 SLONG log_flags;
 ctrl_pt log_cp_1;
 ctrl_pt log_cp_2;
 ctrl_pt log_file;
 SLONG log_next_page;
 SLONG log_mod_tip;
 SLONG log_mod_tid;
 SLONG log_creation_date[2];
 SLONG log_free[4];
 USHORT log_end;
 UCHAR log_data[1];
};

As this structure is no longer in use within the database, it is effectively, a wasted page. Looking at a
hexdump of the WAL page in a new database, we see the following:

tux> ./fbdump ../blank.fdb -p 2

FBDUMP 1.00 - Firebird Page Dump Utility

DATABASE PAGE DETAILS - Page 2
 Page Type: 10
PAGE DATA
 Flags: 0x00000000
 Log Control Point 1:
 Sequence: 0
 Offset: 0
 P_offset: 0
 Fn_Length: 0
 Log Control Point 2:
 Sequence: 0
 Offset: 0

Chapter 13. Write Ahead Log Page — Type 0x0a

58

 P_offset: 0
 Fn_Length: 0
 Current File:
 Sequence: 0
 Offset: 0
 P_offset: 0
 Fn_Length: 0
 Next Page: 0
 Mod Tip: 0
 Mod Transaction Id: 0
 Creation Date: COMING SOON
 Log Free Space: 0 0 0 0
 Log End: 0

The remainder of the page is filled with binary zeros.

Because the WAL is no longer in use, and may even be dropped completely from Firebird 3.0
onwards, it will not be discussed further.

Chapter 13. Write Ahead Log Page — Type 0x0a

59

Appendix A: Fbdump
Throughout some of this document you may have noticed that I’ve been using a tool named fbdump
to display internal representations of Firebird Database pages. Maybe some of you are wondering
where to find it in the Firebird installation directory.

Fbdump is a utility that I had to write myself while writing this document. I’m (almost) happy to let it
loose into the wild, but it’s probably the worst code you will ever have the misfortune to see. It
wasn’t written to a plan, I simply added bits here and there as I needed them. It’s not nice.

Firebird itself comes with a page dumping mechanism, but you need to be running a debug version
of Firebird in order to use it. The good news about doing it this way, rather than using fbdump is that
the official way will keep up with ODS changes. There is no guarantee that fbdump will.

Sorry.

Appendix A: Fbdump

60

Appendix B: Document history
The exact file history is recorded in our git repository; see https://github.com/FirebirdSQL/firebird-
documentation

Revision History

1.2 13 Aug
2021

RR Fix offset off by 2 bytes in Data Page — Type 0x05 — contributed by Rafael
Estevam Reis (#161)

1.1 04 Aug
2020

M
R

Conversion to AsciiDoc, minor copy-editing

1.0 03 Nov
2009

ND Created a new manual.

Appendix B: Document history

61

https://github.com/FirebirdSQL/firebird-documentation
https://github.com/FirebirdSQL/firebird-documentation
https://github.com/FirebirdSQL/firebird-documentation/pull/161

Appendix C: License notice
The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this License.
Copies of the License are available at https://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and
https://www.firebirdsql.org/manual/pdl.html (HTML).

The Original Documentation is titled Firebird Internals.

The Initial Writer of the Original Documentation is: Norman Dunbar.

Copyright © 2009. All Rights Reserved. Initial Writer contact: NormanDunbar at users dot
sourceforge dot net.

Appendix C: License notice

62

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html

	Firebird Internals: Inside a Firebird Database
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Database Structure
	2.1. Single File Databases
	2.2. Multiple File Databases
	2.3. Shadow Files

	Chapter 3. Standard Database Page Header
	Chapter 4. Database Header Page — Type 0x01
	Chapter 5. Page Inventory Page — Type 0x02
	Chapter 6. Transaction Inventory Page — Type 0x03
	Chapter 7. Pointer Page — Type 0x04
	Chapter 8. Data Page — Type 0x05
	8.1. Record Header
	8.2. Record Data
	8.3. A Worked Example
	8.4. Examining The Data
	8.4.1. Compressed Data
	8.4.2. Uncompressed Data
	8.4.3. Null
	8.4.4. NULL status bitmap

	Chapter 9. Index Root Page — Type 0x06
	Chapter 10. Index B-Tree Page — Type 0x07 — YOU ARE HERE.
	10.1. B-Tree Header
	10.2. Index Jump Info
	10.3. Index Jump Nodes
	10.4. Index Nodes
	10.5. Index Data

	Chapter 11. Blob Data Page — Type 0x08 — TODO
	Chapter 12. Generator Page — Type 0x09
	12.1. Creating Lots Of Sequences

	Chapter 13. Write Ahead Log Page — Type 0x0a
	Appendix A: Fbdump
	Appendix B: Document history
	Appendix C: License notice

