
Migration from MS-SQL to Firebird
Marcelo Lopez Ruiz

24 July 2011 - Document version 1.3

2

Table of Contents
Introduction ... 3
Pros and Cons ... 3

Why migrate to Firebird ... 3
Why not migrate to Firebird ... 4

Database Server Setup .. 4
Database Administration ... 5

Database Files Administration .. 5
User Administration ... 5
Backup and Restore Operations .. 6

Data Types .. 6
Converting the bit data type ... 8
Converting the identity data type .. 8
Converting the uniqueidentifier data type .. 9

SQL Syntax ... 9
Using Database Basics ... 10
Using variables .. 10
Flow Control .. 11
Standard Statements ... 13
Using Transactions ... 14
Using Cursors .. 14

Server-Side SQL .. 15
SQL Tricks .. 15

Trick: Using Cascades .. 15
Trick: Using Updateable Views .. 15

Client Access ... 15
Built-in Client Access Tools ... 16
Client Access for Developers .. 16

Tools ... 16
Migration Tools ... 16
Replacing MS SQL Tools ... 17

Appendix A: Document history .. 18
Appendix B: Public Domain notice and disclaimer .. 19

3

Introduction
Microsoft SQL Server (MS SQL) is a widely used database server. For an overview of its history and versions,
see http://en.wikipedia.org/wiki/Microsoft_SQL_Server#History.

This conversion guide is meant, first, to help users evaluate whether the process should be performed at all. It
then goes on to detail how this can be done, adding bits of experience collected by different people.

There are two important things to take into account when migrating. First, moving the data from one database
server to another can be trivial or not, depending on your database schema. There are many tools to help you
with this process. The standard data conversions are listed in this document.

Second, you will need to migrate any stored procedures and triggers manually. This is the tricky part. There
are many differences, some minor, some important; this document attempts to address most of them, giving
examples on the most frequent problems and how to solve them.

Warning

This guide was written in 2003, when Firebird 1.0 was the current version. Although it has been updated in
a few places, the document as a whole still awaits a thorough revision. That shouldn't stop you from using it
- just be aware that some of the content is outdated, and do read the Release Notes of any Firebird versions
greater than 1.0 up to and including your own version.

Pros and Cons
This section describes reasons to migrate an existing database to Firebird, and reasons not to.

Why migrate to Firebird

This depends mostly on what version you are currently using and what you are using MS SQL for.

For example, if using MS SQL 6.5, it is a simple matter of considering the features and ease of use. MS SQL 6.5
will work with fixed devices rather than dynamically expanding files, which makes it very difficult to balance
ease of administration vrs. available space. There are numerous bugs and annoying behaviours which

If you are using MS SQL 7, you know a lot of the little quirks have been removed, but you are still missing
some great features, such as updateable views, greater control over identity fields, user-defined functions, and
selectable stored procedures. You also don't get cascading referential integrity until the 2000 version. Ditto for
using different collation orders in the same database.

For UNIX-like environment, Firebird can have its security integrated with the operating system's. However, this
should be discouraged for portability.

MS SQL 2000 improved on MS SQL 7, but is still missing one of the key pieces of Firebird: the multi-genera-
tional architecture, which enabled long-running queries to work without getting in the way of traditional short-
lived operational transactions. MS SQL will instead try to convince users to buy yet another server (hardware,

http://en.wikipedia.org/wiki/Microsoft_SQL_Server#History

Migration from MS-SQL to Firebird

4

operating system and database server), set it up as a data warehouse, and use this second server as a source for
reports. One can only wonder about the need for a data warehouse in an integrated environment with cross-
database query capabilities.

Another reason to migrate is to avoid vendor lock-in. MS SQL will only run on Windows NT/2000 (there are
so-called personal editions, but these are limited in available connections and features). This means you are tied
to Microsoft for your operating system and your database server. Firebird will run on many platforms, including
Microsoft Windows, Linux, Solaris, MacOS X, and others.

Yet another reason to consider is price. Firebird is free; MS SQL will require a considerable amount of money on
a per-processor basis. For example, a database accessed through the Internet on a dual cpu - Intel Xeon/Opteron
machine will cost $54,990 (prices obtained from Microsoft's site on 14 Sep 2010).

Last, but certainly not least, is the fact that Firebird is open source. This not only means that there are hundreds
of developers willing to help you use it, improve on it, find bugs, etc., but that you can even modify it and rebuild
it yourself to "scratch your itches". Adding features such as an integrated e-mail system or logging is a matter
of understanding the source code and having the available expertise to modify it. While this may not be a trivial
task, it is certainly doable, and brings an enormous degree of flexibility.

Why not migrate to Firebird
The first, overriding reason should be because your system is working fine as it is. If this is the case, consider
Firebird for future projects, but do not break what is currently working.

There are a number of features MS SQL 7 has that you will not find in Firebird, such as integrated replication
support (this is available as an add-on to Firebird), temporary tables, and integration with other database systems
through OLE DB. It also has an OLAP Analysis services built into it, and native full-text search (this is available
as an add-on to Firebird).

On Microsoft environments, MS SQL 7 and above can have its security integrated with the operating system's.
However, this should be discouraged for portability and performance issues.

MS SQL 2000 also has the ability to work with XML directly, and supports partitioned views for better perfor-
mance on tables which span several servers.

In general, it would seem that MS SQL has better performance on Windows than Firebird on Windows does.
It also has better integration with Microsoft Visual Studio.

Database Server Setup
This section describes differences when installing the database server software.

For users who have used MS SQL in the past and are new to Firebird, they will be greatly surprised when
they learn how easy it is to set up Firebird. The setup process is straightforward, and you can connect to your
database server immediately after setup. Note that the default system administration username is SYSDBA and
the password is masterkey; in MS SQL, the username is sa and the password is empty.

Note that you don't have to select the collation and character sets when installing a Firebird server. In MS SQL,
you not only have to select this option up front, but must reinstall to change it; in addition to this, many other
software packages, such as Microsoft's own Commerce Server, will refuse to use the server if you select the
wrong choices.

http://www.microsoft.com/sqlserver/2008/en/us/pricing.aspx

Migration from MS-SQL to Firebird

5

For users coming from MS SQL 6.5, Firebird has no notion of devices. All data are kept in files in the normal
file system available. Note that you cannot use a raw disk partition to hold your databases.

Important Note: MS SQL uses a logging mechanism to keep database consistent and survive crashes. Firebird
uses a multi-generation mechanism to create copies in-place as they are required, but these are not written
immediately to disk. While this provides a considerable speed gain, you can turn Forced Writes on a per-database
basis to ensure that sudden blackouts will not compromise data integrity. If your server has a reliable environment
such as a dedicated Linux box, and some form of UPS, turning Forced Writes on can be ignored.

Database Administration
This section describes differences in how database are managed in Firebird and MS SQL.

Database Files Administration

MS SQL 6.5 uses devices, which can be files or raw partitions, to manage data. This resulted in a hard-to-
maintain system. MS SQL 7 and MS SQL 2000 corrected this by using normal files in place of devices. For
each database, you will have at least two files: one with the database information itself, and one with a log of
transactions performed.

Firebird does not rely on a log to keep track of transactions, and therefore uses a single file to keep everything.

The CREATE DATABASE statement in Firebird is simpler than the CREATE DATABASE statement in MS
SQL; see the SQL reference for a full description of its capabilities.

One significant difference between the file management model is that MS SQL uses filegroups to partition a
database over a set of files. Firebird can also use different files, but the model is simpler.

An additional consideration for Firebird is the use of shadow files. Shadow files are an instant replica of the
database itself. It is typically used to have a hot backup readily available. MS SQL has no such feature, although
MS SQL 2000 has a similar capability by the use of log shipping between database servers and replication.

User Administration

In MS SQL 6.5, there are two objects to manage: logins and users. Logins specify a username/password combi-
nation used to access a database server; users specify the access rights on each database. Logins are then mapped
to users in databases.

In MS SQL 7, a new kind of object is added to manage groups of users: roles. These simply security definition.
Some roles are system-defined, such as backup operators or database administrators.

Firebird has a security model similar to MS SQL's, but without logins. Users supply a username, a password,
and a role they wish to work under. There is a single security database per database server, which holds all
information about permissions on every database, for every user, for every role.

Under both database systems, it is considered good practice to access all resources through stored procedures,
and grant access only to stored procedures. Security can then be setup through the security assigned to stored
procedures (in Firebird; in MS SQL, the stored procedure executes using the rights of its creator).

Migration from MS-SQL to Firebird

6

Backup and Restore Operations

Firebird uses a backup and restore model which is much simpler than MS SQL, although it sacrifices flexibility.
Backups are performed through command-line or GUI tools, and they backup a whole database at a time. A
restore operation will restore a whole database on a server.

There is no operation to backup differences only, or to restore an isolated set of transactions.

Note that there is a very important option when backing up a database in Firebird: platform dependant or portable.
Performing a portable backup allows the administrator to backup a database on an operating system and restore
that same database on another. This is typically used when development is performed on Windows workstations,
and the operational database is then deployed on a more powerful Linux server, for example.

Data Types
This section describes the different data types available in Firebird and MS SQL, and how to translate types
from one system to another.

MS SQL has different data types, depending on the version. The following table lists the data types along with
the version in which they were introduced.

Table 1. Data Types Conversion Table

MSSQL Ver Data Type Firebird MSSQL definition and comments

6.5 bigint INT64 8-byte integer type.

6.5 binary CHAR Fixed-length binary data with a maximum
length of 8,000 bytes. In 6.5, maximum was
255.

6.5 bit CHAR(1) Integer data with either a 1 or 0 value. Typi-
cally, replaced by constants 'T' and 'F'.

6.5 char CHAR Fixed-length non-Unicode character data
with a maximum length of 8,000 characters.
In 6.5, maximum was 255. Firebird can hold
up to 32,767 characters.

6.5 cursor A reference to a cursor. This can only be
used inside stored procedure or triggers; it
cannot be used on table declarations.

6.5 datetime TIMESTAMP Date and time data from January 1, 1753,
to December 31, 9999, with an accuracy of
three-hundredths of a second, or 3.33 mil-
liseconds.

6.5 decimal DECIMAL Fixed precision and scale numeric data from
-1038 -1 through 1038 -1.

Migration from MS-SQL to Firebird

7

MSSQL Ver Data Type Firebird MSSQL definition and comments

6.5 float FLOAT Floating precision number data from -1.79E
+ 308 through 1.79E + 308.

6.5 image BLOB Variable-length binary data with a maximum
length of 231 - 1 (2,147,483,647) bytes.

6.5 int INTEGER Integer (whole number) data from
-231 (-2,147,483,648) through 231 - 1
(2,147,483,647).

6.5 money DECIMAL(18, 4) Monetary data values from -263

(-922,337,203,685,477.5808) through 263 - 1
(+922,337,203,685,477.5807), with accuracy
to a ten-thousandth of a monetary unit.

7 nchar CHAR(x) CHAR-
ACTER SET

UNICODE_FSS

Fixed-length Unicode data with a maximum
length of 4,000 characters.

7 ntext BLOB
SUB_TYPE TEXT

Variable-length Unicode data with a maxi-
mum length of 230 - 1 (1,073,741,823) char-
acters.

6.5 numeric NUMERIC In MS SQL, decimal and numeric are synon-
ims.

7 nvarchar VARCHAR(x)
CHARACTER SET

UNICODE_FSS

Fixed-length Unicode data with a maximum
length of 4,000 characters.

6.5 real DOUBLE Floating precision number data from -3.40E
+ 38 through 3.40E + 38.

6.5 smalldatetime TIMESTAMP Date and time data from January 1, 1900,
through June 6, 2079, with an accuracy of
one minute. Firebird's has greater range and
accuracy.

6.5 smallint SMALLINT Integer data from -215 (-32,768) through 215 -
1 (32,767).

6.5 smallmoney DECIMAL(10, 4) Monetary data values from -214,748.3648
through +214,748.3647, with accuracy to a
ten-thousandth of a monetary unit. Note that
Firebird's range is greater with this declara-
tion.

2000 sql_variant BLOB Allows the storage of data values of different
data types.

2000 table none Stores results temporarily for later user.

6.5 text BLOB
SUB_TYPE TEXT

Variable-length non-Unicode data with a
maximum length of 231 - 1 (2,147,483,647)
characters.

Migration from MS-SQL to Firebird

8

MSSQL Ver Data Type Firebird MSSQL definition and comments

6.5 timestamp INTEGER A database-wide unique number. In Firebird,
you will have to manage uniqueness through
generators.

6.5 tinyint SMALLINT Integer data from 0 through 255. Firebird
does not have such a small data type.

6.5 varbinary CHAR Variable-length binary data with a maximum
length of 8,000 bytes.

6.5 varchar VARCHAR Variable-length non-Unicode data with a
maximum of 8,000 characters. Firebird can
hold up to 32,765 characters. In 6.5, maxi-
mum was 255.

7 uniqueidentifier CHAR(38) A globally unique identifier (GUID). In Fire-
bird, you will have to generate the values
with User-Defined Functions (UDFs).

A subtle difference in the way NUMERIC and DECIMAL behave in Firebird to bear in mind is that the NU-
MERIC definition means exactly the precision requested (total number of digits), while DECIMAL mean at
least the request precision (the digits to the right of the decimal symbol, however, are maintained exactly). In
MS SQL, on the other hand, numeric and decimal are synonims.

There is also a very common quasi-data type, identity, which can only be used when defining tables. This is an
int which is automatically assigned a value on insertion and cannot be changed.

Converting the bit data type

The bit data type is used to hold a single boolean value, 0 or 1. MS SQL does not support assigning NULL to
this fields. InterBase can emulate this with an INTEGER or a CHAR(1) data type.

The acceptable values can be restricted using domains. For more information on Firebird domains, see the Data
Definition documentation.

Converting the identity data type

There are many ways to perform the conversion. In general, Firebird is more flexible and powerful in this respect.

The most direct conversion is to create a BEFORE trigger on the table, assigning to the previous column the
value from a generator. This ensures that the number is unique.

For added flexibility, a single generator can be used for many tables. In this case, the type would work in a
similar way as a timestamp would - by creating a database-wide unique identifier.

Another common technique is to create a stored procedure to allow access to the generator, and allow clients to
pre-fetch the number. This is particularly useful for tools such as Delphi which import the NOT NULL constraint
on primary keys and refuse to post records with NULL values.

Migration from MS-SQL to Firebird

9

CREATE TABLE my_table (
 my_number integer not null primary key
)

CREATE GENERATOR my_generator

CREATE TRIGGER my_before_trigger FOR my_table
BEFORE INSERT
AS
BEGIN
 IF (NEW.my_number IS NULL)
 THEN NEW.my_number = GEN_ID(my_generator, 1);
END

CREATE PROCEDURE get_my_generator
RETURNS (new_value INTEGER)
AS
BEGIN
 new_value = GEN_ID(my_generator, 1);
END

Converting the uniqueidentifier data type

MS SQL depends on uniqueidentifier data types for replication. It is also a handy way of creating a world-wide
unique identifier for a record.

To use the field like this, create a BEFORE trigger on the table with the field, and retrieve the value from a UDF.

TODO: write the UDF and write the importing procedure

SQL Syntax
This section describes differences in the SQL syntax used by Firebird and MS SQL in general.

Firebird and MS SQL can both use object names (table names, field names, etc.) directly, when they have
no whitespace or other symbols. To include whitespace and otherwise escape object names, MS SQL uses
brackets, [and], while Firebird uses double quotes, ". Another thing to bear in mind is that MS SQL accepts a
database.username.objectname syntax to name objects, which Firebird does not.

Warning

Bear in mind that MS SQL is case-sensitive in its object naming if it was installed with the case-sensitive
option; otherwise it's case insensitive. Fun. Not.

Tip

MS SQL also accepts quoted identifiers, but by default it is set only when accessed through OLE DB and
ODBC, and not when accessed through the DB-Library. In general, therefore, this practice is discouraged.

MS SQL 7 and above supports modification on joins (update, delete, insert). Firebird has no such syntax.

Migration from MS-SQL to Firebird

10

Data types are, of course, different for the different database. Both support a common subset with the most-
used types; this is rarely an issue.

There are different built-in functions. Most of MS SQL functions can be replaced and extended by UDFs in
Firebird.

There are different formats for specifying date constants. In general, Firebird will accept different formats inde-
pendently of the underlying platform - MS SQL, on the other hand, uses a mixture of server-independent, serv-
er-side platform and per-client-connection formats. In addition to this, the MS SQL access methods typically
introduce one or two additional layers where a string constant may be changed one way or another into a date.

MS SQL has more environment variables than Firebird does, but the most common ones (identity retrieval and
user name retrieval) can be found. The only important variable missing is the row count of the latest operation.

An important difference is that Firebird 1.0 does not support the MS SQL CASE statement. You can sometimes
use a stored procedure in its stead, which promotes reusability and eases maintenance. Starting at 1.5, Firebird
fully supports CASE.

A minor difference is that MS SQL does not use a delimiter between statement. This can be the source of some
tricky bugs, specially when using many parenthesis. Firebird requires that every statement end in a semicolon ;
so errors are easier to spot.

Both MS SQL and Firebird support comments using the /* and */ delimiters. MS SQL also supports the -- syntax
to comment a single line. Some client-side Firebird tools also support this syntax, but it is not supported in-line.

Using Database Basics

MS SQL allows clients to use many databases from a single connection. To do this, you can use the
dbname.user.syntax, or execute an explicit USE statement.

Firebird does not allow you to use different databases in the same SQL statement, but it does allow you to
perform transactions spanning multiple databases.

There are many generic tools to enter SQL commands to your database, in both platforms. Note that for Firebird,
you do not need to use GO to delimit T-SQLbatches; rather, you manage transactions explicitly. You can also
use the default of commit-every-statement on both servers.

Warning

If you MS SQL and Firebird setup on the same computer, be careful with the isql command. If you do not
reference them by the full path, the one which is first on your system path will be used, and both MS SQL and
Firebird have a command-line isql program.

Using variables

Variable handling is similar on both platforms. Variables must be declared before being used, specifying their
types. However, bear in mind that variables names in Firebird need not be prefixed with a @ character, and they
do need to be declared before the procedure or trigger body.

For example, compare the following code snippets.

Migration from MS-SQL to Firebird

11

/* MS-SQL */
CREATE PROCEDURE my_procedure
AS
DECLARE @my_variable int
SET @my_variable = 5

/* Firebird */
CREATE PROCEDURE my_procedure
AS
DECLARE VARIABLE my_variable int;
BEGIN
 my_variable = 5;
END

Under both database servers, parameters are considered normal variables, set to an initial value.

Flow Control

BEGIN ... END

Under both database servers, the BEGIN and END keywords can be used to group multiple statements, for
example, inside an IF branch.

GOTO

Firebird has no GOTO statement. However, this usually turns for the better. GOTO statements are usually
used in MS SQL because errors do not roll back transactions by default (the @@ERROR variable must be
examined after every statement); GOTO is used to group error handling statements. In Firebird, there is a better
error-handling mechanism: the WHEN...DO statements.

Of course, GOTO statements can be used for other purposes. In these cases, using stored procedures correctly
will usually improve the database design.

IF

The IF..ELSE statement exists on Firebird with the same semantics. However, Firebird syntax requires a THEN
after the IF condition clause.

IF (something = 'unknown')
 THEN something = 'uuhhh.....';
 ELSE something = 'I know! I know!';

CASE

Firebird 1.0 doesn't have a CASE statement, so you'll need to do some manual conversion work if it is used in
your MS-SQL database.

You can skip this section if you're using Firebird 1.5 or up, since these versions fully support the CASE syntax.

Migration from MS-SQL to Firebird

12

The CASE statement can be used as a switch statement in C or a case statement in Pascal to change one value
for another. This can usually be translated to Firebird 1.0 as a stored procedure returning some value.

/* This is the original MS SQL
 statement, using the * traditional pubs database. */
CREATE PROCEDURE list_states
AS
SELECT
 CASE state
 WHEN 'CA' THEN 'California'
 WHEN 'UT' THEN 'Utah'
 ELSE 'unknown'
 END
FROM authors

/* This is how it can be converted to Firebird. */
/* Isolate the CASE statement. */
CREATE PROCEDURE get_state_name (state_code char(2))
RETURNS (state_name varchar(64))
AS
BEGIN
 IF (state_code = 'CA') THEN state_name = 'California';
 ELSE IF (state_code = 'UT') THEN state_name = 'Utah';
 ELSE state_name = 'unknown';
END

/* This is the selectable stored procedure. */
CREATE PROCEDURE list_states
RETURNS (state varchar(64))
AS
DECLARE VARIABLE short_state CHAR(2);
BEGIN
 FOR SELECT state FROM authors INTO :short_state DO
 BEGIN
 EXECUTE PROCEDURE get_state_name :short_state
 RETURNING_VALUES :state;
 SUSPEND;
 END
END

Three things should be noted from the example above. First, the conversion is trivial. Second, it is however quite
verbose. Third, using a stored procedure allows for greater flexibility, and makes maintenance easier. Suppose
the CASE statement for the state occurs in twelve different procedures, and a new state was added; or that you
misspelled a state name; or any other change. It is clearly beneficial to abstract this conversion, trivial as it may
seem, into its own stored procedure.

Again: as from version 1.5, Firebird fully supports the CASE statement, so no conversion is needed there.

WHILE

WHILE exists in Firebird as it does in MS SQL, with some differences. There are no BREAK or CONTINUE
statements, but these can be emulated with additional controls and variables. There's also a small difference in
syntax; Firebird requires a DO keywords after the WHILE condition. Compare the following equivalent snips.

/* Firebird syntax. */
WHILE (i < 3) DO
BEGIN
 i = i + 1;

Migration from MS-SQL to Firebird

13

 j = j * 2;
END

/* MS SQL syntax. */
WHILE (i < 3)
BEGIN
 SET @i = @i + 1
 SET @j = @j * 2
END

RETURN

The RETURN statement in MS SQL will return an output integer variable and stop execution. Firebird supports
the EXIT statement, which will jump to the final END in stored procedures. However, there is no implicit output
variable, so if you need to return a code (it's optional in MS SQL), you will need to declare an output variable
in the procedure.

WAITFOR

The WAITFOR statement in MS SQL will suspend execution for an amount of time, or until a specified time
is reached. Something like this could be done with a UDF; however, under both database servers, an alternative
would be very much preferred, as the connection from the client remains suspended, too.

Standard Statements

The standard statements which can be found in all databases are SELECT, INSERT, UPDATE and DELETE.
Firebird and MS SQL support them, but there are some non-standard MS SQL extension to consider if they
are being used.

The SELECT statement in Firebird does not allow the INTO clause to create a new table on the fly. Instead, it
is used to bind a result into a variable.

/* MS SQL syntax to get field values into a variable. */
SELECT @my_state = state
FROM authors
WHERE auth_name = 'John'

/* Firebird syntax. */
SELECT state INTO :state /* --> note the ":" before the name */
FROM authors
WHERE auth_name = 'John'

In MS SQL 7 and above, the SELECT clause can take a TOP specifier to limit the number of rows returned.
This feature is currently under development for the Firebird engine.

Both MS SQL and Firebird support the normal INSERT syntax and the INSERT..SELECT syntax.

Both MS SQL and Firebird support the normal UPDATE. MS SQL also supports a form of UPDATE in which
a join is performed, and one side of the join is updated. Think of this as a WHERE on steroids. If this feature
is absolutely required, it can be implemented using views.

Both MS SQL and Firebird support the normal DELETE. MS SQL also supports the TRUNCATE TABLE
statement, which is a more efficient (but dangerous) form of DELETE.

Migration from MS-SQL to Firebird

14

/* MS SQL syntax to delete all records in my_table. */
TRUNCATE TABLE my_table /* ...or... */
DELETE FROM my_table

/* Firebird syntax. */
DELETE FROM my_table

The biggest threat are our fumbling fingers. More data has been destroyed by "delete from xxx"
"oops" than deliberate "delete rdb$pages".

—Jim Starkey

Using Transactions
Transactions are rarely used directly in Firebird when using DSQL. Named transactions are not supported in
this case. Both syntaxes accept the WORK keyword for compatibility.

This should not present a problem in most situations, as MS SQL's explicit transaction control is usually in place
because there no support for using exception handlers.

Tip

MS SQL has a XACT_ABORT global variable, to manage whether transactions are rolled back on run-time errors.
Otherwise, the @@ERROR variable must be examined after each statement.

In general, most discussions about isolation level problems found in MS SQL environments are void when
taken to a Firebird database server. Contention between readers and writers is minimal and is resolved by the
multigeneration architecture.

Using Cursors
MS SQL uses cursors mostly to iterate over query results to perform activities. Other than syntax, there is
little difference in what can be accomplished in either database. Although there are many options for iterating
backwards and forwards, in practice the only cursor used is the forward-only cursor.

/* MS SQL syntax. */
DECLARE my_cursor CURSOR
FOR SELECT au_lname FROM authors ORDER BY au_lname
 DECLARE @au_lname varchar(40)
 OPEN my_cursor
 FETCH NEXT FROM my_cursor INTO @au_lname
 WHILE @@FETCH_STATUS = 0
 BEGIN
 /* Do something interesting with @au_lname. */
 FETCH NEXT FROM my_cursor
 END
CLOSE my_cursor
DEALLOCATE my_cursor

/* Firebird syntax. */
DECLARE VARIABLE au_lname VARCHAR(40);
 ...
 FOR SELECT au_lname FROM authors
 ORDER BY au_lname INTO :au_lname DO
 BEGIN

Migration from MS-SQL to Firebird

15

 /* Do something interesting with au_lname. */
 END

Note that MS SQL can place cursors in variables and pass them around; this cannot be performed in Firebird.

Warning

Different versions of MS SQL change the default scope for cursor variables. Be careful with how you use them
and bear this in mind when reading code to convert it.

Server-Side SQL
This section goes beyond simple SQL syntax differences, and describes the different tasks which can be accom-
plished server-side through SQL.

SQL Tricks
This section shows how to use some advanced Firebird features to emulate MS SQL behaviour, and avoid MS
SQL workarounds.

Trick: Using Cascades
Versions of MS SQL previous to 2000 will not support cascading updates and deletes. Foreign keys will always
roll back on changes.

In MS SQL, this is typically solved by a combination of stored procedures and triggers, to avoid declaring the
foreign key explicitly. This, in turns, makes the relationships implicit rather than explicit, which means that tools
can't read the relationships directly and work on them.

During the migration process, all of the workaround procedures and triggers can be ignored - Firebird supports
the cascading updates and deletes enforcing declaratively.

Trick: Using Updateable Views
Versions of MS SQL previous to 2000 will not support updates on joined views fully. This is a major issue,
since views are typically considered read-only; there are numerous restrictions to have them being updateable.

In Firebird, there are also a number of restrictions, but they are only meant for automatic updating. If the engine
cannot perform the updates by itself, you can write triggers on the view to perform the required logic.

Client Access
This section describes the differences in how clients access a Firebird and an MS SQL database.

Migration from MS-SQL to Firebird

16

Built-in Client Access Tools

The standard command-line utility is isql. This is used usually when executing large scripts, or when writing
batch files.

When a graphical user interface (GUI) is available, the administration tool will most probably be IBConsole.
This tool is similar to MS SQL's Enterprise Manager.

Client Access for Developers

There are three basic mechanisms to get to a Firebird database. You can either use the raw C API interface,
an Open Database Connectivity (ODBC) driver, or an OLE DB driver (the latter is used also for ActiveX Data
Objects, ADO, access).

Using the raw C API allows developers to write portable code. All platforms support this API. This is also
the foundation for the popular Delphi and C++ Builder component sets, such as InterBase Objects (IBO) and
InterBase Express (IBX).

Using an ODBC driver lets developers write code that can be reused with different databases, as long as they
restrict themselves to a common SQL subset. There are many tools which can use Firebird through ODBC
drivers.

Using an OLE DB drivers lets developers use Microsoft's popular ADO API. This allows the Firebird database to
be reached from tools such as Visual Basic or ActiveX Server Pages (ASP). The most popular driver is currently
Microsoft's own OLE DB->ODBC bridge.

Tools

This section describes tools used to aid in migration, and to replace standard tools found in MS SQL.

Migration Tools

The following table lists tools which can be used to help you migrate an MS SQL database to a Firebird database.

Table 2. Migration Tools

Tool Name Provided By

Microsoft Access and Microsoft SQL Server to InterBase Wizard Marcelo Lopez Ruiz

IBDataPump Alex Poloziouk

http://www.ibphoenix.com/sql2gdb.html
http://www.geocities.com/poloziouk/IBDataPump.html

Migration from MS-SQL to Firebird

17

Replacing MS SQL Tools

The following table lists tools which can be used to replace the standard tools that come with MS SQL.

Note that, in general, all applications that provide services similar to Enterprise Manager also provide query
services.

Table 3. Replacement Tools

Tool Name Replaced By

Books Online Online PDF Documentation

Client Network Utility No need to; connection strings are fully self-described. Test with IBCon-
sole.

Enterprise Manager IBConsole

Enterprise Manager IBExpert (commercial)

Enterprise Manager InterBase Workbench (commercial)

Import and Export Data -

Performance Monitor InterBase Heartbeat (commercial)

Profiler InterBase Observer SQL Profiler (commercial)

Query Analyzer IBConsole

Server Network Utility IBConsole

Service Manager Control Panel Applet

These tools are just samples to help in replacement. For a better and more up-to-date list, see e.g. http://www.
ibphoenix.com/download/tools/.

http://www.ibexpert.com/
http://www.InterBaseworkbench.com/
http://www.fleetriver.demon.co.uk/
http://www.fleetriver.demon.co.uk/
http://www.ibphoenix.com/download/tools/
http://www.ibphoenix.com/download/tools/

Migration from MS-SQL to Firebird

18

Appendix A:
Document history

The exact file history is recorded in the manual module in our CVS tree; see http://firebird.cvs.sourceforge.net/
viewvc/firebird/manual/src/docs/firebirddocs/migrationmssql.xml?view=log

Revision History
1.0 2003 MLR Written, published, and placed in the Public Domain by Marcelo Lopez

Ruiz.

1.1 1 Oct 2005 PV Added general warning about the document being outdated.
Divided the part on flow control into subsections. Made clear that re-
placing CASE is only necessary in pre-1.5 versions.
Added document history and moved public domain notice to an ap-
pendix.

1.2 14 Sep 2010 MP Article's first sentence: three versions -> many versions, and added
ulink to MSSQL version history.
Pros and Cons :: Why migrate to Firebird: Updated CPU + price info
and corresponding ulink (14 Sep 2010).
Pros and Cons :: Why not migrate to Firebird: Removed para about in-
cremental backups (10 Mar 2011).

1.3 24 Jul 2011 PV Edited article's first para and moved it into Introduction, replacing its
existing first para. Also edited beginning of Intro's second para.
Data types: Gave table a dbfo processing instruction so that it won't get
squeezed (and mutilated) on one PDF page.
Client Access :: Replacing MS SQL Tools: Updated link to IBPhoenix
tools download section.
Document history: Changed link to CVS source (now points directly to
document). Added info for document version 1.2.

http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/src/docs/firebirddocs/migrationmssql.xml?view=log
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/src/docs/firebirddocs/migrationmssql.xml?view=log

Migration from MS-SQL to Firebird

19

Appendix B:
Public Domain notice and disclaimer

The author has placed this work in the Public Domain, thereby relinquishing all copyrights. Everyone is free to
use, modify, republish, sell or give away this work without prior consent from anybody.

This documentation is provided on an “as is” basis, without warranty of any kind. Use at your own risk! Under
no circumstances shall the author(s) or contributor(s) be liable for damages resulting directly or indirectly from
the use or non-use of this documentation.

	Migration from MS-SQL to Firebird
	Table of Contents
	Introduction
	Pros and Cons
	Why migrate to Firebird
	Why not migrate to Firebird

	Database Server Setup
	Database Administration
	Database Files Administration
	User Administration
	Backup and Restore Operations

	Data Types
	Converting the bit data type
	Converting the identity data type
	Converting the uniqueidentifier data type

	SQL Syntax
	Using Database Basics
	Using variables
	Flow Control
	BEGIN ... END
	GOTO
	IF
	CASE
	WHILE
	RETURN
	WAITFOR

	Standard Statements
	Using Transactions
	Using Cursors

	Server-Side SQL
	SQL Tricks
	Trick: Using Cascades
	Trick: Using Updateable Views

	Client Access
	Built-in Client Access Tools
	Client Access for Developers

	Tools
	Migration Tools
	Replacing MS SQL Tools

	A. Document history
	B. Public Domain notice and disclaimer

