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About the speaker

| work for IBPhoenix providing technical support.

| maintain the windows Installer for Firebird and do the Win-
dows builds.
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Introduction

The aim of this talk is to use the TPC-C
benchmark to study :

How does Firebird perform under load?

Can we use the data collected from the tests to
make evidence based decisions that will improve
application performance?
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What is TPC-C

» Models typical OLTP application

+ Old fashioned “bricks'n'mortar” business —
perhaps a wholesaler providing stock to
shops?

» Five randomly generated workloads
» New Orders (45%)

Payments (43%)

Deliveries (4%)

Stock-level checks (r/o0) (4%)

Order Status (r/o) (4%)

» |ts main metric I1s the number of new orders
per minute.
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What's good about the benchmark ?

« Simple

+ Synthetic

« (Falirly ) consistent, despite a high degree of
randomisation.

« Stable platform to generate hundreds of
hours of test data. (500+ so far.)

« Studying real data under load is always bet-
ter than guess work.
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What's bad about the benchmark ?

* No blobs

» No stored procedures

» Nothing special at all, really

» Very few business rules

+ Very simple data model

* Very short rows

+ Difficult to overload the hardware

» And, of course, It Is not your data or your
application.
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The Test Harness

* Provides a consistent unchanging platform
» Server is 4-core x64 CPU with 8 GB RAM

» H/W Raid controller with

* 4 *HDDs configured in RAID 10

* 2 * SSDs configured in RAID 1

 Dual boots to
*  Windows 2012
* 0openSUSE 13.1

» Firebird 2.5.3 is installed with SS,CS and SC open on different
ports, using a single configuration file.

» Network connection is 1 Ghit.
@ Client is another 4-core x64 CPU with 8 GB RAM

» The Benchmark app is written in Java executed from the client
» Test detalls and test results are stored in a separate Firebird
database (on a remote server) for analysis.
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Outline of the tests

* Firebird defaults except :
*+ 3000 buffers hardcoded into each DB
* Sweepsetto0
*+ SStied to two CPU (Windows Only)
» Each test run consists of
*  Sweep
*+ gstat full before test
* 15 minute test
+ gstat full after test
» No special configuration of host O/S
* But updates applied.

* Test Series are fully automated
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Test Coverage

Windows, Linux
HDD (RAID 10), SSD (RAID 1)
SuperClassic, Classic, SuperServer

Small, Large and Very Large Databases

* 1 GB (effectively in memory)
* 10 GB (must use the file system cache.
* 40 GB (too large for fs cache so lots of swapping.)

10..100 connections In steps of 10 connections

That Iis a lot of test combinations (360)
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Caveats - |

Results are specific to :
- Firebird 2.5.3
- This test harness

ne results can only be a guide, not a rule.

ne main message to take away Is the
patterns the graphs produce, not the
actual numbers.
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Caveats - II

Connections are NOT users

Basically the test harness is using a
connection pool
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At last, let's look at some of the
results
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HDD vs SSD

Overall, SSD is clearly a winner
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Database Size and HDD vs SSD

The story is not so simple...
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Avg New Orders Per Minute

Windows vs Linux
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Where is the problem with Windows performance?

Windows vs Linux

Classic Server
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Windows and Super Server still have a problem...

Windows vs Linux

Super Server
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Impact of increased connections on TXN time
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Impact on max average txn times as contention increases
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Impact of increased connections on NO PM
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So, why the slow down as

connections increase?

New orders randomly add ~10 line items per order.

» Each line item requires an update of the quantity in the
stock table.

» There are ~100,000 stock items.

» Even so, two txns could each order 10 items, and just
one of which is identical to each txn.

» S0 we have 18 items locked for update and one dead-
locked.

» A third txn comes along and tries to lock on of these 19
items and so we now have 28 or 29 products locked.

No order can commit until it has updated stock levels for
all line items.

» And so it goes...
(@1BPhoenix



What can we learn from this?

+ Fundamentally database architecture and
application design have a profound effect on
application performance.

+ |deally performance issues should be fixed
at this level.

» For the TPC-C benchmark this means look-
Ing at other ways to manage the update of
the stock levels.

» Of course this takes the most time and ef-
fort and doesn't solve the immediate prob-
lem.
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Can we use the test harness to
advise us on how to improve
performance?

The Hypothesis

By running lots of tests with different
configurations we can take averages of
each test series and derive an optimal

configuration.
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We will look at three configuration
parameters

+ Page Size
» Buffers
» Hash Slots

» For each parameter we will run our test
series, changing a single value each time.
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8K appears to be ~17% better than 4K.

Page Size

And 16K not so interesting.

1800

1600

1400

1200 -

1000

800 -

Avg New Orders Per Minute

400

200

HHHHHHHHHHHHHH

1245

4096

Effect of Page Size

1644

8192

1558

16384



Page Size and Disc

But again, things are not so simple...

Impact of Disc on choice of page size
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Super Server and Page Size

The previous slide indicated that 8K page size was optimum,
but apparently this is not true for SS.

Super Server and Page Size
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Buffers
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Buffers — Classic Server

L ess IS more

Classic Server
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Buffers — Super Classic

» Can use more buffers
+ ~7 % improved performance over classic

Super Classic
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Buffers — Super Server

Buffers - SS
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Chosen correctly can lead to 80% performance improvement over SC
Note impact of 128K buffers — disables file system caching!
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Buffers

Incorrect settings have a massive (bad) impact

Each architecture has different behaviour

Must analyse by architecture

CS — smaller is better

SC (2.5 only) prefers smaller over larger

SS - increase buffers to look for sweet spot — more is not
better.

» (Tests carried out on 10 GB DB)
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Hash Slots

+ All database access generates lock table
activity, even just simple selects.

» Locks are located via a hash table.

« They are linked in chains.

« The chains are searched sequentially.

+ More hash slots allows for shorter chains.

So In theory as connections increase we

have more lock contention, and therefore

more hash slots should improve perform-
ance.
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The effect of different Hash Slots values

_Hash Slots - Classic Hash Slots - Super Classic
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Towards an Optimal Config?

To summarize:

» 8K page size seems preferable for SC and CS
» 4K page size seems better for SS but we'll test both

= 8009 Hash Slots seems to improve performance for all ar-
chitectures.

» Each arch. Has specific sweet spots for buffers

» SC - 3000.
» (CS-1000, perhaps 1500 ?
» 5SS - 32000.

So, lets see how that works...
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Compare Optimal to Defaults — Linux, SSD 1GB DB

SuperClassic, Linux, SsSh, LGB
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Compare Optimal to Defaults — Linux, HDD 1GB DB

SuperClassic, Linux, HDD, 1L GBE
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Compare Optimal to Defaults - Linux, SSD, 10GB

SupaerClassic, Linux, SsSh, 1L0SGE
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Compare Optimal to Defaults - Linux, HDD, 10GB

SuperClassic, Linux, HDD, 1.0 SB
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Compare Optimal to Defaults — Linux, SSD, 40GB

Super Classic, Linux, SsSo, 40 GB
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Compare Optimal to Defaults — Linux, HDD, 40GB

Super Classic, Linux, HD D, 40 SBE
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The big question

» Why don't SSDs seem to respond to our
configuration techniques?
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SSDs and SuperClassic - a recap
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New Orders Per Min
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SSDs and SuperServer - a recap

Supersenver, Linux, Ss, 1GEB
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So why has SSD performance
degraded?

« While reviewing this presentation | noticed
that there was no analysis of the hash slots
data.

» Perhaps the answer lies there?
» Let's take a look.
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Perhaps the hash slots change is the
problem with diminished SSD performance?
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And our hypothesis?

+ |t clearly worked for HDDs

« SSDs did not respond or actually performed
more poorly due to inadequate analysis (but
we didn't know that until we had done the
tests.)

+ Ultimately this hypothesis failed but that Is
not a bad thing — we have learnt that:
e SSDs perform very differently to HDDs

» Determining optimal configurations requires much more
refined data analysis.

» Optimal Settings do not transfer automatically to a
different setup.

» Bad configuration choices have just as much an impact
on performance as good ones do. ©
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Where next with this research?

» Obviously work needs to be done to understand
better how to get the best performance out of
SSDs

» Can the optimal configuration be refined further?

» What happens when we try different hash slots with our
‘optimal’ page size and buffers?

» Ditto for a different page size.

» What happens if we play around a bit with the File
System Cache size and the number of buffers?

» What happens if we remove the sources of lock
contention in the application/data model?

Lots of questions that still need answers.
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Summary

For Firebird 2.5.3 and this test harness...
e SSDs are better than HDDS, especially for VLDBs

 Linux and Windows perform similarly, except for SS under
Windows.

» Usually SS is better than SC which is better than CS

» 8K page size is usually better than 4K except for SS for
HDDs

» Smaller buffers are better for CS
e SC doesn't care neither for large buffers nor small

» SS likes large buffers but not so big as to disable the file
system cache.

» SSDs do not appear to respond to the same performance
tweaks as HDDs.
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Conclusion

« There Is a fine balance to be had in all
performance tweaking.

» Test everything.

» There is no universal optimised config.
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Questions?
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And finally, a big thankyou to all
the sponsors who have helped
make this conference possible...
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