Using TPC-C to
study Firebird
Performance

Paul Reeves
IBPhoenix

mail: preeves at ibphoenix.com

(§1BPhoenix

3:;‘ CopyCat

1B SOpscene
ﬁc::pyﬁ'm IB’/’.’;.».".’;

(1| am

EREDSOFT BREDSOFT

SITa b TBPhisenix

VEIRWANE

IBSurgeon [%033 SITa

SII@ & 1BPhocnix IBSurgeon m B, S!“I'a
SiTd

IBSurgeon

SiTa 18P oenix IBSurgeon mm SITa

VEIIWANE

MHOBC O
EXCHANGE

IBSurgeon m EXCHANGE

f}copycm

IBSurgeon m EctiANGE

IBSurgeon m uascow

L] um

EREDSOFT EREDSOFT

1Bx.s fpscene
l:I-Cc:-pycm IB‘?;;.M?',

@ IBPhoenix

= THE

POWEHR

W ITHIN

SiTa

LI T

SI-I:a & 1BPhocnix IBSurgeon m B, SI:II._a
SiTa

Tod fawadi

L CopyCat 1B Hipscene L CopyCat

1B Hipscene £ CopyCat IB’A},—M

m (1] 1]
EREDSOFT BREDSOFT EREDSOFT

SlTa @1BPhocnix 1BSurgeon o) iz SITd

VRIRwANL

IBSurgeon [S5, SiTa & 1BPhocnix

ASFTmARE

@iPhocois 1BSurgeon Lzt SITA @mrocs 1BSurgeon [EJizes. SITA

IBESurgeon m Erciame SIiTd & 1BPhocnix

ASFTmARE

)) Firebird

Conference 2014

\

@iphocoix 1BSurgeon EJszte SITA @mnocoic 1BSurgeon [EJizes. SITA

VEINWANL

iBsurgeon it SITA @mrhoenis

AEFTmARE

@rrocnic 1BSurgeon [l SITA @upionis 1BSurgeon [Jmas. SITA

IBSurgeon m o S ITEI & 1BPhoenix

ASFTmARE

um mm ER
BREDSOFT BREDSOFT BREDSOFT
opyCat ¥ s fpscene opyCat
L copye 1B, ki Lk CopyC
1B.s Hpscene L3 CopyCat 1Bojeen

About the speaker

| work for IBPhoenix providing technical support.

| maintain the windows Installer for Firebird and do the Win-
dows builds.

HHHHHHHHHHHHHH

Introduction

The aim of this talk is to use the TPC-C
benchmark to study :

How does Firebird perform under load?

Can we use the data collected from the tests to
make evidence based decisions that will improve
application performance?

(§1BPhoenix

What is TPC-C

» Models typical OLTP application

+ Old fashioned “bricks'n'mortar” business —
perhaps a wholesaler providing stock to
shops?

» Five randomly generated workloads
» New Orders (45%)

Payments (43%)

Deliveries (4%)

Stock-level checks (r/o0) (4%)

Order Status (r/o) (4%)

» |ts main metric I1s the number of new orders
per minute.

(§1BPhoenix

What's good about the benchmark ?

« Simple

+ Synthetic

« (Falirly) consistent, despite a high degree of
randomisation.

« Stable platform to generate hundreds of
hours of test data. (500+ so far.)

« Studying real data under load is always bet-
ter than guess work.

(§1BPhoenix

What's bad about the benchmark ?

* No blobs

» No stored procedures

» Nothing special at all, really

» Very few business rules

+ Very simple data model

* Very short rows

+ Difficult to overload the hardware

» And, of course, It Is not your data or your
application.

(§1BPhoenix

The Test Harness

* Provides a consistent unchanging platform
» Server is 4-core x64 CPU with 8 GB RAM

» H/W Raid controller with

* 4 *HDDs configured in RAID 10

* 2 * SSDs configured in RAID 1

 Dual boots to
* Windows 2012
* 0openSUSE 13.1

» Firebird 2.5.3 is installed with SS,CS and SC open on different
ports, using a single configuration file.

» Network connection is 1 Ghit.
@ Client is another 4-core x64 CPU with 8 GB RAM

» The Benchmark app is written in Java executed from the client
» Test detalls and test results are stored in a separate Firebird
database (on a remote server) for analysis.

(§1BPhoenix

Outline of the tests

* Firebird defaults except :
*+ 3000 buffers hardcoded into each DB
* Sweepsetto0
*+ SStied to two CPU (Windows Only)
» Each test run consists of
* Sweep
*+ gstat full before test
* 15 minute test
+ gstat full after test
» No special configuration of host O/S
* But updates applied.

* Test Series are fully automated

(§1BPhoenix

Test Coverage

Windows, Linux
HDD (RAID 10), SSD (RAID 1)
SuperClassic, Classic, SuperServer

Small, Large and Very Large Databases

* 1 GB (effectively in memory)
* 10 GB (must use the file system cache.
* 40 GB (too large for fs cache so lots of swapping.)

10..100 connections In steps of 10 connections

That Iis a lot of test combinations (360)

(§1BPhoenix

Caveats - |

Results are specific to :
- Firebird 2.5.3
- This test harness

ne results can only be a guide, not a rule.

ne main message to take away Is the
patterns the graphs produce, not the
actual numbers.

(§1BPhoenix

Caveats - II

Connections are NOT users

Basically the test harness is using a
connection pool

(§1BPhoenix

At last, let's look at some of the
results

(§1BPhoenix

HDD vs SSD

Overall, SSD is clearly a winner

2000 -
1800
1600
1400
1200 -
1000
800 -

Mew Qrders per minute

600
400
200

HHHHHHHHHHHHHH

HOD vs SSD

mHDD
B 550

Database Size and HDD vs SSD

The story is not so simple...

2500

2000

1500

1000

500

HHHHHHHHHHHHHH

1 GE DE

10 GB DB

40 GB DE

m HDD (RAID 10)
m SSD (RAID 1)

1800 +

1600

1400 -

1200

1000 —

800 -

600

400

200

AVG NEW ORDERS FPER MIN

HHHHHHHHHHHHHH

1213

CS

Architecture

Firebird Architecture

1606

1570

Avg New Orders Per Minute

Windows vs Linux

1800
1632

1600 +
1400+
1200
1000
800 -
600

400 -

200 -

HLinux (openSUSE 13.1)

HHHHHHHHHHHHHH

Linux appears to be ~13% faster

1437

B Windows (Server 2012)

Where is the problem with Windows performance?

Windows vs Linux

Classic Server
2500 —

2000 —
1500 —

1063 1030
1000

New Orders Per Min

500 —

Linux — CS Windows — CS

VWindows vs Linux

Super Classic
2500 —

2000
1738 1754

1500

1000

New Orders Per Min

500 —

o

@ IBPhoenix

HHHHHHHHHHHHHH

Linux — SC Windows — SC

Windows and Super Server still have a problem...

Windows vs Linux

Super Server
2500

1989

2000

1526

1500 - 1456

1000 +

MNew Orders Per Min

500 -

Linux — SS Windows —SS (2 cpu) Windows — SS (4 cpu)

HHHHHHHHHHHHHH

% NS
@?&W n,.QA.Tﬂ &

B G025
%% %9
o by 6 2,

(

O o
p 0 b, 2 5
By @]
< _OOJ‘..@_.] < mJ
m n«bmmwvv d .u%\.,%a,mx
n 3 72 v N
@ Q&v . c 1 nvmw p
QO = Y 5 4 056,
s £ %, % o o I %
o] E t
o ﬁ@w& S %
O g @@ ‘qmw " N o _ a,%o@% &
N OB % & g & %0, 8
a9 g u@,w@w M m @ an® ¥
" [:5} kh :
g 02 - 5 G 5 8 X . g D, o
- d o - o B : 0
S 4 3 & @%%v e = £ V % %@@,w 2
& — o] w ¢
- o0 % E oo & d NG
"y o ¢ 8 %%, Z 0 o A <o 2
z 4 £ 2 5
2 @%w g =7 %8,
0 X 4 Y
O = % G G
o @@w\w Q 0%
.y =] % 2, =] I 6
0 %) &,
nv\wy N
Q.%AVF Nw,vb..w.
wﬂonv&v %%%Qw)
O %, %, A0
awnwb G 8,
@ oo . o,
959, AP
Q S, > s |-e
? 0
%% 9.% =
%%, X4 5
= Y Gty S
i N
5 0y 4o,
& 0o 52
NG o @
(e ! , 0% P
1 r@ ﬁ/ [=] o (=] (=] o o o (=] o o (=] ﬁVQ: Q_-
o o o o o o o (=] \W:. ﬂf m % m m M w % W m M N, nv B
Yy ¢
n UIAL 13l S13PI0 M3N Ul 134 SIBPIQ MaN
I

W ITHIN

ER

FOoOW

TH

Impact of increased connections on TXN time

38

£
=

I3
wn

[
=

Avg Txn Time (ms)

=

10 20 ad 40 A0 G0 70 a0 a0 100
Connections

(§1BPhoenix

Impact on max average txn times as contention increases

& AVG AVG TXN MS - AVG MAX_TXN MS
70000

60000
50000
40000
30000
20000

Txn time (MS)

10000

Om 3 7 i - i B i % A
10 20 30 40 50 60 70 80 90 100

Connections

(§1BPhoenix

Impact of increased connections on NO PM

2000

1786

1800 1712 I

1600 1569

1451 1422

1400 1335
1281
1233

1200 1151

1000

800

New Orders Per Min

600
400

200

10 20 30 40 50 B0 i] a0 100

Connections

(§1BPhoenix

So, why the slow down as

connections increase?

New orders randomly add ~10 line items per order.

» Each line item requires an update of the quantity in the
stock table.

» There are ~100,000 stock items.

» Even so, two txns could each order 10 items, and just
one of which is identical to each txn.

» S0 we have 18 items locked for update and one dead-
locked.

» A third txn comes along and tries to lock on of these 19
items and so we now have 28 or 29 products locked.

No order can commit until it has updated stock levels for
all line items.

» And so it goes...
(@1BPhoenix

What can we learn from this?

+ Fundamentally database architecture and
application design have a profound effect on
application performance.

+ |deally performance issues should be fixed
at this level.

» For the TPC-C benchmark this means look-
Ing at other ways to manage the update of
the stock levels.

» Of course this takes the most time and ef-
fort and doesn't solve the immediate prob-
lem.

(§1BPhoenix

Can we use the test harness to
advise us on how to improve
performance?

The Hypothesis

By running lots of tests with different
configurations we can take averages of
each test series and derive an optimal

configuration.

(§1BPhoenix

We will look at three configuration
parameters

+ Page Size
» Buffers
» Hash Slots

» For each parameter we will run our test
series, changing a single value each time.

(§1BPhoenix

8K appears to be ~17% better than 4K.

Page Size

And 16K not so interesting.

1800

1600

1400

1200 -

1000

800 -

Avg New Orders Per Minute

400

200

HHHHHHHHHHHHHH

1245

4096

Effect of Page Size

1644

8192

1558

16384

Page Size and Disc

But again, things are not so simple...

Impact of Disc on choice of page size

2500

2000 —

W 4096
mB8192
16384

1500 —

1000 -

avg new orders per min

200

HDD SSD

HHHHHHHHHHHHHH

Super Server and Page Size

The previous slide indicated that 8K page size was optimum,
but apparently this is not true for SS.

Super Server and Page Size

1800
1600 -
1400
1200+
1000+
a0 —
G600 —
400
200 —

1604

1357
1198

ST
4096 8192 16384

NEW ORDERS PER MIN

HHHHHHHHHHHHHH

Buffers

(§1BPhoenix

Buffers — Classic Server

L ess IS more

Classic Server

112

1071
-\-_ 1024 1010

= ~-
= 8a7
o 860
LLl
o
=
LLl
—
e
&3
=
LLl
=
1000 2000 3000 4000 8000 16000 32000

(§1BPhoenix

Buffers — Super Classic

» Can use more buffers
+ ~7 % improved performance over classic

Super Classic

1225 1237 1221
1133 i 5 B

1080

812

NEW ORDERS PER MIN

1000 2000 3000 4000 8000 16000 32000

(§1BPhoenix

Buffers — Super Server

Buffers - SS

2500

2212

2000 -
1792 1729

lV —=

1500

1000

=200 -

NEW ORDERS PER MIN

Q-
1000 2000 3000 4000 8000 16000 32000 64000 128000

Chosen correctly can lead to 80% performance improvement over SC
Note impact of 128K buffers — disables file system caching!

(§1BPhoenix

Buffers

Incorrect settings have a massive (bad) impact

Each architecture has different behaviour

Must analyse by architecture

CS — smaller is better

SC (2.5 only) prefers smaller over larger

SS - increase buffers to look for sweet spot — more is not
better.

» (Tests carried out on 10 GB DB)

(§1BPhoenix

Hash Slots

+ All database access generates lock table
activity, even just simple selects.

» Locks are located via a hash table.

« They are linked in chains.

« The chains are searched sequentially.

+ More hash slots allows for shorter chains.

So In theory as connections increase we

have more lock contention, and therefore

more hash slots should improve perform-
ance.

(§1BPhoenix

The effect of different Hash Slots values

_Hash Slots - Classic Hash Slots - Super Classic

= 1600 = 2000 -
= 1352 3
ks 1288 1229 "
G 181 1493
A 120 2 1500 s 1ll i 1359
2 0
0 G
T 800 T L00g
O 0
2 2
c 0 0 50-
2 o)
2 S
< 0 < 0 . i
1009 8009 16001 31991 1009 8009 16001 31991
2167
=
E 2028
S 000 L 27 . 1961
|
0
500
I
o
0
T 1000
@)
% 500
c
&
i U T T T
1009 3009 16001 31991

HHHHHHHHHHHHHH

Towards an Optimal Config?

To summarize:

» 8K page size seems preferable for SC and CS
» 4K page size seems better for SS but we'll test both

= 8009 Hash Slots seems to improve performance for all ar-
chitectures.

» Each arch. Has specific sweet spots for buffers

» SC - 3000.
» (CS-1000, perhaps 1500 ?
» 5SS - 32000.

So, lets see how that works...

(§1BPhoenix

Compare Optimal to Defaults — Linux, SSD 1GB DB

SuperClassic, Linux, SsSh, LGB
=l D efaults =—— Optimal

5000
4500
4000
3500
2000
2500
2000
1900
1000

S00

MNew Crders Per Minute

Connections

Classic, Linux, Sss, 1GE

=il Defaults =@ COptimal
5000

4500
4000
2500
2000
2500
2000
1500 ‘
1000 ._
500

New Orders Per Min

1
'
'
f

N
e

—aif i
i —=
Connections

Supersenver, Linus, Ssh, 1GEB

=l D efaults =—a— Optimal 4k Oiptimal 8k
S000
4500
4000
3500
3000
2500
2000 - —
1500 2= = . — —r e — —a
1000 — i
200
0

@ IBPhoenix

= T HE POWEHR W ITHIN

Mew Orders Per Minute

Connections

Compare Optimal to Defaults — Linux, HDD 1GB DB

SuperClassic, Linux, HDD, 1L GBE

—fl— D efalltls = O ptimal
S000

4500
4000
2500
2000
2500
2000
1500
1000

500

{
+
8

New Orders Per Minute

Connections

Classic, Linux, HD D, 1GB

il Daefaults =i Cptimal
S000

4500
4000
3500
2000
2500
2000

1§33f*f141-—i1—r4

S00

New Orders Per Minute

Connections

Superserver, Linux, HDD, 1GB
il D efaults =@ Ciptimal (4 Optimal (81
5000
4500
4000
3500
3000
2500
2000 E— =
1500 - —
1000
500

o

Mew Orilers Per Minute

Connections

@ BPhoenix

W ITHIN

Compare Optimal to Defaults - Linux, SSD, 10GB

SupaerClassic, Linux, SsSh, 1L0SGE
=l Defaults =—— Cptimal
5000
4500
4000
3500
3000

2500
—-—
zoop 4 —

1500 .\\# \-b-ﬁ
1000 — > — e S -

500

New Orders Per Minute

Connections

Classic, Linux, SsSh, 10GB

—l— D efaults =—— Cptimal
5000

4500
4000

3500

2000

2500

2000 M
1500 @ ® -
1000 | ——— - %
500 |

o

Mew Orders Per Min

Connections

Super Server, Linux, Ssh, 10GB
e —@— Defaults =——@— Optimal (43 Optimal (8K
4500
4000
3500
2000 — _.-__' —
2500 -
2000
1500

1000
EDU

(§1BPhoenix

THE F O R WITHIN

1

Mew Orders Per Min

Connections

Compare Optimal to Defaults - Linux, HDD, 10GB

SuperClassic, Linux, HDD, 1.0 SB

—fl— D efaults =——— Cptimal
5000

4500
4000
3500
2000
2500 ——

2000 § =
1500 \

1000 —— g - Ci si e - =5

500

Mew Orders Per Min

Connections

Classic, Linusx, HDD, 10 GB

—fl— D efaultls =—p— Cptimal
5000

4500

4000

3500

3000

2500 —
2000

1500 -

1000 cozam = .- —i —T- — ———

coo | g, - =

Connections

Mew Orders Per Min

SupersSaernver, Linusx, HDD, 10 GB

=l Defaults =—8— Optimal (4 O ptimal (8K
S5000

4500
4000
3500
2000

2500 1
SQ00 R—.— . e
1500 == :-— — .
1000 —

S0

Mew Orclers Per Min

Connections

@ BPhoenix

W ITHIN

Compare Optimal to Defaults — Linux, SSD, 40GB

Super Classic, Linux, SsSo, 40 GB

—f— D efaults =———Cptimal
5000

4500
4000
2500

3000
2500 .’,__——": i ——
2000 - —=a —.-_ﬁ-——-——=-; _—._ —
1500 | —- —n
1000 —

500

Classic, Linux, SsSh, 40 GBE

il D efaults =——— Cptirmal
S000

4500
4000
3500
3000
2500

zooo = s P ~—i — - =
1500 — -
—
-

Mew Orders Per Min

1000 — =
500

Connections

Super Saerveaer, Linux, S=S, 40 GBE

—file— D aefaults = Optimal (43 D ptimal (2K
5000

4500
4000

2500 —— = |
3000 /——_—:; e —m- .
2500 IM
2000
1500
1000

500

Iew Orders Per Min

Connections

@ IBPhoenix

= T HE POWEHR W ITHIN

Compare Optimal to Defaults — Linux, HDD, 40GB

Super Classic, Linux, HD D, 40 SBE
—flf— D efalults =—— Cptimal

S000

4500

4000

2500

Z000

2500

2000

1500 - s —

1000
S00

o Connection=s

New Orders Per Min

p ¢

i — —e >—
- L = o

i]
R
B

Classic, Linux, HDD, 40 GB
—— Defaults —— Ciptimal
5000
4500
4000
2500
2000
2500
2000
1500
1000
500

Mew Orders Per Min

nr

=i —— — - —t - v =
== = = = i —

1s

Connections

Superserver, Linus, HDD, 40 GB

m—— il Daefaults = Optimal (43 Crptimal (8

4500
4000
3500
3000
2500
2000
1500

e

@ BPhoenix

W ITHIN

MNew Crelers Per Hin

Connections

The big question

» Why don't SSDs seem to respond to our
configuration techniques?

(§1BPhoenix

SSDs and SuperClassic - a recap

SuperClassic, Linux, S=D, 1GE
=l D efaults =—— Cptimal

S000
4500
4000
2500
2000
2500
2000

1500
1000
500

MNew Orders Per Minute

Connections

SuperClassic, Linux, S=SD, 1L0GE
=l D efaults = COptimal
5000
4500
4000
3500
2000

2500
= ——— —
2000

1500 .\‘_ e —_"-=-——-—-—-—_—._—
1000 —_ > > _—

MNew Qrders Per Minute

S00

Connections

Super Classic, Linux, Ssh, 40 GE

= D efaults =—a— Cptimal
5000

4500
4000
3500

2000
2500 -/‘:7 L ——
2000 — —di h-_c-; — o

1500 — —-

1000
500

@ IBPhoenix

= T HE POWEHR W ITHIN

New Orders Per Min

New Qrders Per Min

Wew Orders Per Min

—

S000
4500
4000
3500
2000
2500
2000

1500 e

1000
500

S000
4500
4000
2500
3000
2500
2000
1500
1000

500

5000
4500
4000
3500
3000
2500
2000
1500
1000
500
[

[BPhoenix

= THE

SSDs and Classic - a recap

Classic, Linux, SsS, 1GE

i Defaulls =—e— Cptimal

§

"
'
'F

-
=

—i
—E=

N
B

-—-___—h_‘-:'\-:l -

P

o

w

R

WIiTHI

N

Connections

Classic, Linusx, Ss, 1O0GE

—fli— D efaults =———— Optirmal

——

Connections

Classic, Linux, SSh, 40 GB

—l— D efaults ——— Cptimal

=

—Tn
—i

Connections

SSDs and SuperServer - a recap

Supersenver, Linux, Ss, 1GEB

=l Defaults == Optimal 4k Optimal 8k

S000
4500
4000
3500
3000
2500
2000
1500
1000
S00

L]]
3
’

e "y

MNew Orders Per Minute

Connections

Super Server, Linux, Ssb, 1058
S000 il Cofaults == Cptimal (45 Cptimal (2R3
4500
4000
500
2000 e _.-__' —— -
2500 T =
2000
1500
1000
S00

o Connections

Mew Orders Per Min

Super Saerver, Linux, SsD, 40 GBE

il D efALILS e O ptimal (4D Dptimal (8K
5000

4500

4000

3500 — ——EL E=

2000 — — et i

2500 —~ 2.-—:::.-'—"--———_____-"'_.,_:=__-
2000

1500

1000
500

@ BPhoenix

W ITHIN

Iew Qrders Per Min

Connections

So why has SSD performance
degraded?

« While reviewing this presentation | noticed
that there was no analysis of the hash slots
data.

» Perhaps the answer lies there?
» Let's take a look.

(§1BPhoenix

New Crders Per Min

o B % %Y Y %

Mew Orders Per Min
o B B %% % % Y%

Perhaps the hash slots change is the
problem with diminished SSD performance?

Influence of hash slots on contention

—_— —————

New Orders Per Min

ol S D D
97%%0%9 % % % Y

Influence of hash slots on contention

SSD, Linux, 10 GB DB P L SSD, Linux, 10 GE DB —#—CS-8009 —#=—CS - 1009

15 20 25 a0 35 40 45 50 10 15 20 25 30 35 40 45 50

o

Connections Connections

Influence of hash slots on contention
SsD, Linux, 10 GB DB e LR L A5 1a0s

/\\\/—*

5 10 15 20 25 20 25 40 45 50

Connections

(§1BPhoenix

And our hypothesis?

+ |t clearly worked for HDDs

« SSDs did not respond or actually performed
more poorly due to inadequate analysis (but
we didn't know that until we had done the
tests.)

+ Ultimately this hypothesis failed but that Is
not a bad thing — we have learnt that:
e SSDs perform very differently to HDDs

» Determining optimal configurations requires much more
refined data analysis.

» Optimal Settings do not transfer automatically to a
different setup.

» Bad configuration choices have just as much an impact
on performance as good ones do. ©

(§1BPhoenix

Where next with this research?

» Obviously work needs to be done to understand
better how to get the best performance out of
SSDs

» Can the optimal configuration be refined further?

» What happens when we try different hash slots with our
‘optimal’ page size and buffers?

» Ditto for a different page size.

» What happens if we play around a bit with the File
System Cache size and the number of buffers?

» What happens if we remove the sources of lock
contention in the application/data model?

Lots of questions that still need answers.

(§1BPhoenix

Summary

For Firebird 2.5.3 and this test harness...
e SSDs are better than HDDS, especially for VLDBs

 Linux and Windows perform similarly, except for SS under
Windows.

» Usually SS is better than SC which is better than CS

» 8K page size is usually better than 4K except for SS for
HDDs

» Smaller buffers are better for CS
e SC doesn't care neither for large buffers nor small

» SS likes large buffers but not so big as to disable the file
system cache.

» SSDs do not appear to respond to the same performance
tweaks as HDDs.

(§1BPhoenix

Conclusion

« There Is a fine balance to be had in all
performance tweaking.

» Test everything.

» There is no universal optimised config.

(§1BPhoenix

Questions?

(§1BPhoenix

And finally, a big thankyou to all
the sponsors who have helped
make this conference possible...

O ccszn, SITA @15y 1BSurgeon Heoorr 1By

SOFTWARE *CopyCat Upscene

Platinum Platinum Platinum Platinum

HHHHHHHHHHHHHH

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

