
Measuring Firebird Disc I/O

Paul Reeves

IBPhoenix

Introduction

Disc I/O is one of the main bottlenecks in

Firebird. A good disc array can give a

massive increase in available IOPS. The

question is how do we measure our disc

I/O requirements?

Two Basic Ways To Measure IO

From within Firebird itself
From the host O/S

Measuring I/O from Firebird

Firebird knows what it has done –
MON$IO_STATS allows us to catch this
info.
Portable across platforms and architecures
Works wih all versions since Fb 2.1
Sort of a work in progress -enhanced in 2.5

MON$IO_STATS

Firebird tracks four IO counters

Page Reads - physical reads from disc
Page Writes – physical writes to disc
Page Fetches – pages read from memory
Page Marks – pages marked in memory for
writing to disc.

About Fetches

Mostly we can ignore Fetches but be sure to
make sure that the cache is big enough
otherwise excessive reads will occur.

Be sure to tune DB Cache before drawing
any conclusions about Firebird disc I/O.

Understanding How the MON$
tables work

All the Firebird monitoring tables run within
snapshot table stability transactions.
You need to start a new transaction to see
the latest data in the monitoring tables.
Historic data is not stored.
Once a transaction is finished or an attach-
ment is disconnected the details disappear
from the monitoring tables.
Cumulative database level stats requires
persistent connections. This means that
even database level stats are lost if all con-
nections to the database are closed.

Making Stats persist - DBTriggers

DB Triggers available at Connection and
Transaction Level.
Stats are stored at Attachment and Trans-
action Level (amongst others.)
Solution – catch stats at end of Connection
or Transaction.

Capturing Txn Stats

Initial analysis indicated that txn level stats
may not be complete – more study required.
Worse – Txn commit triggers and read only
transactions don't mix.

Capturing Connection Level Stats

Stats seem to be complete(ish).
No problems with r/o txns.

A table to store the data
CREATE TABLE PERSISTENT_IO_STATS (
PERSISTENT_IO_STATS_ID INTEGER NOT NULL,
LOG_TIME TIMESTAMP
DEFAULT CURRENT_TIMESTAMP NOT NULL
MON$STAT_ID INTEGER,
MON$STAT_GROUP SMALLINT,
MON$PAGE_READS BIGINT,
MON$PAGE_WRITES BIGINT,
MON$PAGE_FETCHES BIGINT,
MON$PAGE_MARKS BIGINT,
MON$REMOTE_ADDRESS VARCHAR(253),
MON$REMOTE_PROCESS VARCHAR(253),
MON$USER CHAR(31),
MON$ATTACHMENT_ID INTEGER,
DURATION BIGINT,
CONSTRAINT PK_PERSISTENT_IO_STATS PRIMARY
KEY (PERSISTENT_IO_STATS_ID)
);

And a trigger to capture it with...

Add a couple of Stored Procs...

And we can start to analyse our disc I/O by
Application, User, IP address.

Add a couple of Stored Procs...

And we can start to analyse our disc I/O by
Application, User, IP address.

Problems with MON$IO_STATS

Attachment level stats are almost complete
– except that SS doesn't include back-
ground threads.
Accurate stats can only be acquired by
running Classic.
Long running attachments will produce rub-
bish stats if tracking IOPS is the goal.
But well written applications do not leave
connections open – do they?.

Using the host O/S for monitoring

All? modern O/S have monitoring and dia-
gnostic tools. We'll take a look at the one
that comes with Windows.

Setting up perfmon

Perfmon has one of the worst gui designs I
have ever seen.
Fortunately we don't have to use it.
We use logman instead.
Logman is the script interface to the perf-
mon counters.

Register a counter set for logman
Typical command-line:

logman.exe create counter configname -cf
d:\path\to\d\config.cfg -f csv --v -o
d:\path\to\d\outputfile -y -si 1

These options mean:

Param Description

-cf Name of config file

 -f csv Use csv file format

--v Attach file versioning information to the end of the log name

-o Output path and file name

-y Answer yes to all questions without prompting

-si 1 Sample interval in seconds.

Counter Description

\Cache\Data Maps/sec Data Maps/sec is the frequency that a file system
such as NTFS, maps a page of a file into the file
system cache to read the page.

\LogicalDisk($DRIVE)\Disk Reads/sec

\LogicalDisk($DRIVE)\Disk Read Bytes/sec

\LogicalDisk($DRIVE)\Disk Writes/sec

\LogicalDisk($DRIVE)\Disk Write Bytes/sec

\LogicalDisk($DRIVE)\Avg. Disk Read Queue Length

\LogicalDisk($DRIVE)\Avg. Disk Write Queue Length

\LogicalDisk($DRIVE)\Current Disk Queue Length is the number of requests outstanding on the disk at
the time the performance data is collected. ...
Requests experience delays proportional to the length
of this queue minus the number of spindles on the
disks. For good performance, this difference should
average less than two.

\LogicalDisk($DRIVE)\Split IO/sec reports the rate at which I/Os to the disk were split
into multiple I/Os. A split I/O may result from
requesting data of a size that is too large to fit into a
single I/O or that the disk is fragmented.

What to log at disc level?

Use sed to convert $DRIVE to actual drive:
sed s/\$DRIVE/d:\path\to\d\drive/g master.cfg > logman_drive.cfg

What to log at Firebird level

\Process(fb_inet_server#1)\% Processor Time

\Process(fb_inet_server#1)\IO Read Operations/sec

\Process(fb_inet_server#1)\IO Write Operations/sec

\Process(fb_inet_server#1)\Virtual Bytes

\Process(fb_inet_server#1)\Working Set

Note syntax for fb_inet_server processes.

You can log as many fb_inet_server processes as you

want, even if they don't exist.

Start logman

Just use:

logman start counterset

Logman – useful things to know

logman -? prints the help screen

logman query will list all known configs

and show their status.

logman stop configname will stop a run-

ning config. Useful if you kill a batch file.

Otherwise the dataset just keeps increasing.

logman delete configname will do exactly

what it says on the tin.

OK, we've got some data.
Now What?

That is a good question.
Step One – analyse it for anomalies. Data
caches are usually the problem.
Once all caching is disabled we can start to
run meaningful tests to compare, say, a
single user with ten concurrent users.

Estimating required IOPS

With the table above we can start to guestimate our
requirements with one of the following:
POTENTIAL_WIOPS = NUM_DISKS * DISK_WIOPS

or
POTENTIAL_RIOPS = NUM_DISKS * DISK_RIOPS

Don't forget the write penalty

If the test envionment is using a different
disc sub-system to the target production en-
vironment then be sure to account for the
RAID write penalty.
You need to look at the split between
WIOPS and RIOPS and adjust accordingly.

Summary

We've looked at two different ways of
measuring Firebird disc I/O.
We've seen some of the caveats required
when studying the data results.
We've made a start at estimating disc sub-
system requirements for Firebird.

	Title
	Why Choose a Framework?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

