
  

Tips for success 
 

Common mistakes in application development 
with Firebird and how to avoid them

Pavel Císař
IBPhoenix

Firebird Conference 2011



  

Agenda

● Recipes for disaster
● Mistakes in database design
● Wrong approaches to handle data



  

Recipes for disaster

● “Agile Knowledge Management”
● Wrong assumptions
● Unjustified trust to SW, HW, tools etc.
● “Thinking only up to the API”
● Preferring the way of least resistance
● No prototyping / No testing



  

Solution

● Think, don't just copy!
● If it walks as duck, squeaks as duck, it could 

be a beaver in disguise!
● Don't trust strangers! 
● ...especially those who offer you candy!
● You don't know until you verify it, so what 

you're waiting for?



  

Database Design

● Artificial vs. Natural primary keys
● VARCHAR vs. BLOB
● Character sets
● Security



  

Artificial vs. Natural keys

● Artificial keys are always better (at the end)
● ...but there's hidden bloody price...
● ...the JOIN HELL

– Users want to see anything else but keys

– Users use anything but keys for search

– You have to join tables to get in important 
columns even it wouldn't be necessary

– You have to add more indices



  

Solution

● Use natural keys for most used “leaf” tables
● Cache the lookup tables in application

– Full set for small ones

– MRU for big ones



  

VARCHAR & BLOB – The Wrong

● People decide by feel, not reason
● Focus on values, not how they're used
● Oversize just to be safe



  

VARCHAR vs. BLOB - Solution

● There is a great guide from Ivan Přenosil
http://www.volny.cz/iprenosil/interbase/ip_ib_strings.htm

● Quick tips:
– Anything longer than 150 characters is good candidate for 

BLOB

– BLOBs are bad news for search and server-side processing

– Long VARCHARs are bad news for sorts

– You can combine several long VARCHARs into single 
BLOB or refactor them out to 1:1 table

– More than one BLOB per table is bad idea
(Refactor BLOBs out to 1:1 table)

http://www.volny.cz/iprenosil/interbase/ip_ib_strings.htm


  

Golden Rule of Database design

Get as much rows on 
single page as you can
● BIGINT x INTEGER 

x SMALLINT
● DATE x TIMESTAMP
● Non-empty BLOBs 

are rows too!
● Pages smaller than 

8K are pointless



  

Character sets

Not that big problem today,
But still some developers are careless

or blindly default to UTF-8



  

Character sets - Solution

● Always use one!
● Consider conversions!

– What is native data type/encoding for strings 
your application uses?

– Minimize number and complexity of 
conversions: 
Database <-> Application <-> Input/Output



  

Security – The problem

Either
NO security at all

or
Extreme security measures



  

Security - Solution

● Use as little from SQL security features as you 
can

● Use remote server with restricted access
● Your application is exclusive gateway to the 

database
● Use OWNER account (block SYSDBA if you 

want)
● Implement fine-grained security in your 

application



  

Handling data – The wrong

● “When I did this in ISQL, Flamerobin, my other 
app etc., it worked just fine, so what's wrong 
now?”

● “It worked just fine on my development 
machine, so why it fails in production?”

● “Damn, it doesn't scale as I expected...”



  

Handling data 101

● Get intimate with your connectivity library!
● Always manage your transactions manually!
● Always mind the MGA!
● Never fetch more data than you actually need!
● One size doesn't fit all:

– Interactive vs. Machine processing

– Native vs. Web applications

– Embedded vs. Department vs. Corporate



  

Know your connectivity

● Identify higher and lower level access paths
● Learn the steps the access paths use

– Path complexity

– Data conversions

– Storage requirements

– Algorithm efficiency

– Points of failure



  

Transactions

● Interactive
– All data read in single transaction

READ_ONLY READ_COMMITTED

– Writes in separate R/W transaction

● Machine processing
– R/W in single SNAPSHOT or 

READ_COMMITTED

– No UNDO log

● Long running “monitoring” transactions
– READ_ONLY READ_COMMITTED



  

MGA Implications

● Long running transactions block GC
● Inserts never block other users, update and 

delete may block
● Changes create garbage
● Correlating inserts with update/delete is VERY 

bad idea
● Mass update/delete burdens you with GC



  

Minimizing data transfers

● Interactive
– Less rows

– Less columns, fetch the rest on demand

– Cache lookups on client

● Machine processing
– Do as much on the server as you can



  

Beware the “One code to rule them all”

● Except the simplest cases, there is direct 
proportionality between universality and direct 
cost

● Universal code that doesn't have an option to 
cop-out on special case to user code is recipe 
for disaster



  

Questions?

Pavel Císař
pcisar@ibphoenix.cz

IBPhoenix
www.ibphoenix.com

http://www.ibphoenix.com/

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22

