
Jaybird 2.1 JDBC driver
Java Programmer's Manual

The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this License.
A copy of the License is available at http://www.firebirdsql.org/manual/licenses-pdl-text.html.

The Original Documentation is _________________. The Initial Writer of the Original
Documentation is Roman Rokytskyy, Copyright (C) 2004-2008. All Rights Reserved. (Initial
Writer contact: roman@rokytskyy.de).

Contributor(s): ______________________________________.

Portions created by ______ are Copyright (C) _________ [Insert year(s)]. All Rights Reserved.
(Contributor contact(s): ________________ [Insert hyperlink/alias]).

http://www.firebirdsql.org/manual/licenses-pdl-text.html

Table Of Contents

Table of Contents

1. Introduction...5
Jaybird architecture...5
Supported Servers...6
Supported Specifications..7
Distribution package...7
Quality Assurance...8
Useful resources..8

2. Obtaining a connection..9
Obtaining connection java.sql.DriverManager...9
Driver types..13
Connection Pooling..16
The javax.sql.ConnectionPoolDataSource implementation.........................16
Using FBConnectionPoolDataSource with JNDI...18
The javax.sql.DataSource implementation...20
The javax.sql.XADataSource implementation...21

3. Handling exceptions..23
Working with exceptions..23
Warnings...26
java.sql.SQLException in Jaybird..26
SQL states...27
Useful Firebird error codes...28

4. Executing statements...33
The java.sql.Statement interface...33
Statement behind the scenes...37
The java.sql.PreparedStatement interface...38
Prepared statement pooling...42
The java.sql.CallableStatement interface..44
Batch Updates...50
Escaped Syntax...51

5. Working with result sets..53
ResultSet properties..53
ResultSet manipulation...55

6. Using transactions...59
JDBC transactions..59
Auto-commit mode...60
Read-only Transactions..62
Transaction Isolation Levels...63
Savepoints...64
Transaction Parameter Buffer...65
Table Reservation...68

7. Working with Services..71
ServiceManager..72
Backup and restore...72
User management...77
Database maintenance..78
Database statistics...83

8. Working with Events...85
Database events..85
Posting the events...86
Subscribing for events..87

Appendix A. Extended connection properties...89
Appendix B. Data Type Conversion Table...91
Appendix C. Connection Pool Properties..93

Standard JDBC Properties..93
Pool Properties..94
Runtime Pool Properties...94
Firebird-specific Properties..94
Non-standard parameters..95

Appendix D. Character Encodings..97
Encodings Types...97
Encodings in Java...98
Available Encodings...100

Appendix E. Supported JDBC Scalar Functions...103
Numeric Functions..104
String Functions..105
String Functions (continued)..106
Time and Date Functions..107
Time and Date Functions (continued)..107
System Functions..108
Conversion Functions...108

Java Programmer's Manual 4

Chapter 1.

1. Introduction

Jaybird is a JCA/JDBC driver suite to connect to Firebird database server. When
Borland released an open-source version of the InterBase RDBMS, it included
sources for a type 3 JDBC driver called InterClient. However due to some
inherent limitations of the InterBase (and later Firebird) client library, it was
decided that the type 3 driver was a dead end, and the Firebird team developed a
pure Java implementation of the wire protocol. This implementation became the
basis for Jaybird, a pure Java driver for Firebird relational database.

This driver is based on both the new JCA standard for application server
connections to enterprise information systems and the well known JDBC
standard. The JCA standard specifies an architecture in which an application
server can cooperate with a driver so that the application server manages
transactions, security, and resource pooling, and the driver supplies only the
connection functionality.

Jaybird architecture

The Jaybird driver consists of three layers, each of which is responsible for its part
of the functionality. The component diagram depicting the Jaybird internal
structure contains two additional components: “pool” and “JMX manager”.

• The GDS layer represents a Java translation of the Firebird API. It is
represented by two classes from org.firebirdsql.gds package: GDS interface
and GDSFactory. GDS factory class is responsible for instantiating an
implementation of the GDS interface depending of the type of driver used.

Implementation of the GDS interface determines the type of the driver that will
be used.

• The JCA layer represents the heart of the driver. Here all connection and
transaction management happens. Additionally this layer adapts the GDS API
and proxies the calls to the GDS implementation.

• The JDBC layer is an implementation of the JDBC specification.

• The Pool component represents implementation of
ConnectionPoolDataSource, DataSource and XADataSource interfaces from
the JDBC 2.0 Optional Package. The pool implementation uses
ManagedConnectionFactory to create physical connections to the database.

• The Manager component represents a JMX 1.0 compatible implementation that
uses The Services API to manage the database and the server itself. Currently
only calls to create and drop database are available, but in the future a full range
of services will be made public: database backup/restore, user management,
statistics gathering, etc.

Supported Servers

Jaybird 2.1 supports all current Firebird servers, however no support for the
optimized wire protocol from the Firebird 2.1 is being implemented. Jaybird
versions 2.x in current distribution won't work with InterBase and Yaffil servers,
however the compatibility might be restored in the future.

Chapter 1. Introduction 6

id Architecture

GDS

JDBC

JCA

ManagedConnection
ManagedConnectionFactory

Type 4 Type 2

Pool

JMX Manager«delegate»«delegate»

Illustration 1.1 Jaybird internal structure.

Supported Specifications

Jaybird supports the following specifications:

Specification Details

JDBC 3.0 Driver passes the complete JDBC compatibility test suite,
though some features are not implemented. It is not
officially JDBC compliant, because of the high certification
costs.

JDBC 2.0 Optional
Package

(formerly Standard
Extension API)

Jaybird provides an implementation of following interfaces
from javax.sql.* package:

● The ConnectionPoolDataSource implementation
provides connection and prepared statement pooling.

● The DataSource implementation provides seamless
integration with major web and application servers.

● The XADataSource implementation provides means
to use driver in distributed transactions.

JCA 1.0 Jaybird provides an implementation of
javax.resource.spi.ManagedConnectionFactory and
related interfaces. CCI interfaces are not supported.

JTA 1.0.1 The driver provides implementation of the
javax.transaction.xa.XAResource interface via the JCA
framework and a javax.sql.XADataSource
implementation.

JAAS 1.0

JMX 1.2 Jaybird provides an MBean that allows creating and
dropping databases via JMX agent.

Distribution package

Jaybird driver has compile-time and run-time dependencies to JCA 1.0, JTA 1.0.1,
JAAS 1.0 and JDBC 2.0 Optional Package. Additionally, if Log4J classes are
found in the class path, it is possible to enable extensive logging inside the driver.

Following file groups can be found in distribution package:

File name Description

jaybird-2.1.6.jar An archive containing the JDBC driver, the JCA
connection manager, the Services API and event
management classes.

jaybird-full-2.1.6.jar Same as above but also the connection pooling classes.

jaybird21.dll Precompiled version of the JNI library for Type 2 and
Embedded Server drivers for 32-bit Windows platform.

libjaybird21.so Precompiled version of the JNI library for Type 2 and

Chapter 1. Introduction 7

Embedded Server drivers for 32-bit Linux platforms.

Quality Assurance

The Jaybird team uses JUnit test cases to assure the quality of the released driver.
Also during development unit tests are extensively used. It is not allowed to
commit a code to the CVS until it passes all existing unit tests. Also each
reproducible bug usually gets its own test case. This guarantees that a clean check
out from the CVS can be compiled and will not contain any previously discovered
and fixed bug. Currently there are more than 450 test cases covering most of the
driver code.

Additionally, before the driver is released, is is required to pass JDBC
compatibility suite (CTS), which currently contains 1216 test cases. Unfortunately
Firebird does not support all features used by the CTS, so some test cases from the
original CTS suite were excluded from run.

Useful resources

JDBC

For extensive JDBC documentation, see the “Documentation” section of Sun's
website http://java.sun.com/products/jdbc/.

Firebird

General information about the Firebird database is available from the Firebird
web site (http://www.firebirdsql.org).

Information about using SQL in Firebird, see the “Language Reference” and
“Developer's Guide” documents, that are available for download from the “Main
Downloads” section of the IBPhoenix web site.

Jaybird Support

A new resource JaybirdWiki has become available. It can be found at
http://jaybirdwiki.firebirdsql.org. This is a place where the community shares
information about different aspects of Jaybird usage, configuration examples for
different applications/servers, tips and tricks, FAQ, etc.

Chapter 1. Introduction 8

http://jaybirdwiki.firebirdsql.org/
http://www.firebirdsql.org/
http://java.sun.com/products/jdbc/

Chapter 2.

2. Obtaining a connection

Jaybird is regular JDBC driver and supports two primary ways to obtain
connection: via java.sql.DriverManager and via javax.sql.DataSource
interface.

Obtaining connection java.sql.DriverManager

java.sql.DriverManager historically was the first connection factory in Java. It
is based on the concept of the JDBC URL, a string that uniquely identifies JDBC
driver to use and the database to which user wants to connect. Additionally there
is possibility to specify additional connection parameters, like user name and
password.

JDBC URL consists of three parts that are presented on Illustration 2.1.

Illustration 2.1: Structure of the JDBC URL
First part, "jdbc:firebirdsql:" is always fixed and specifies the so called

localhost/3050:c:/database/example.fdbfirebirdsql:jdbc:

JDBC protocol

JDBC subprotocol,
identifies driver to use

RDBMS specific part, identifies the
database to which driver must connect,

in our case that is
<host>/<port>:<path to database>

protocol and subprotocol for the JDBC connection. In other words, the type of the
connection that the application wants to obtain, in our case it is a connection to a
Firebird database. Example of obtaining the connection is shown on Illustration
2.2.

package hello;

import java.sql.*;

public class HelloServer {

 public static void main(String[] args) throws Exception {

 Class.forName("org.firebirdsql.jdbc.FBDriver");

 Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:c:/db/employee.fdb",
 "SYSDBA", "masterkey");

 // do something here

 }

}

Illustration 2.2: Simple example shows how to obtain JDBC connection.

The first line of this code is important – it tells JVM to load the Jaybird 2.1 JDBC
driver. According to JDBC specification, at this point driver registers itself in
java.sql.DriverManager and tells it for which protocol it is responsible for.

There are two ways to register JDBC driver:

• Possibility 1. The application loads the driver's class. The JDBC specification
requires that during class initialization the driver performs the registration
itself.

Class.forName("org.firebirdsql.jdbc.FBDriver");

• Possibility 2. The JDBC driver is listed in a jdbc.drivers system property.
For example in your ~/.hotjava/properties file you can specify following
line:

jdbc.drivers=foo.Driver:org.firebirdsql.jdbc.FBDriver

Alternatively you can specify the value of this property during JVM startup:

java
 -Djdbc.drivers=org.firebirdsql.jdbc.FBDriver
 -classpath jaybird-full-2.1.6.jar;C:/myproject/classes
 my.company.SomeJavaExample

The second statement of the example tells the java.sql.DriverManager to open
database connection to the Firebird server running on the host where Java code is
executed, and the path to the database is c:/database/employee.fdb.

Database specification consists of the name of the server where the database
server resides, optionally you can specify a port to which the driver will connect
(by default port 3050 is used). The server name can be specified either using its IP
address (for example 192.168.0.5) or using its DNS name (for example fb-
server.mycompany.com or just fb-server).

Chapter 2. Obtaining a connection 10

After the server name and port, path to the database is specified. The format in
which the path is specified depends on the platform where the Firebird server
runs. On Windows it must include the drive letter and path, for example
"c:/database/employee.gdb", which points to the employee database that can
be found in a root directory of drive C:. Java allows to use either "/" or "\\" as
path separator on the Windows platform. On Unix and Linux platform, you can
use only "/" as the path separator.

If you are using Firebird 1.5 or higher, you can specify a database alias instead of
the absolute database path. For more information about using aliases see the
documentation of the Firebird server.

Specifying extended properties

What if we want to specify additional connection parameters, a client encoding,
for example? JDBC specification provides another method that allows to specify
additional connection properties (Illustration 2.3).

package hello;

import java.sql.*;
import java.util.*;

public class HelloServerWithEncoding {

 public static void main(String[] args) throws Exception {

 Class.forName("org.firebirdsql.jdbc.FBDriver");

 Properties props = new Properties();

 props.setProperty("user", "SYSDBA");
 props.setProperty("password", "masterkey");
 props.setProperty("encoding", "UNICODE_FSS");

 Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:C:/employee.gdb",
 props);

 // do something here

 }

}

Illustration 2.3: Obtaining JDBC connection with additional connection properties.

Additional properties, for example SQL role for the connection can be added to
the props map. The list of all available extended properties can be found in
Extended connection properties.

However, not in every place you can use the above described method. Jaybird
provides a possibility to specify extended properties in the JDBC URL.
Illustration 2.4 shows the specification for specifying extended JDBC properties

Chapter 2. Obtaining a connection 11

in the URL.

jdbc:firebirdsql:host[/port]:<path to db>?<properties>

<properties> ::= <property>[&<properties>]
<property> ::= <name>[=<value>]

Illustration 2.4: Extended JDBC URL format.

In this case extended properties are passed together with the URL using the
HTTP-like parameter passing scheme: first comes main part of the URL, then “?”,
then name-value pairs separated with “&”. Code in Illustration 2.6 is equivalent to
the previous example.

import java.sql.*;

...

Class.forName("org.firebirdsql.jdbc.FBDriver");

Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:C:/employee.gdb" +
 "?encoding=UNICODE_FSS",
 "SYSDBA",
 "masterkey");

Illustration 2.5: Example of specifying extended properties in JDBC URL.

Obtaining a connection via javax.sql.DataSource

JDBC 2.0 specification introduced a new mechanism to obtain database
connection without requiring the application to know any specifics of the
underlying JDBC driver. The application is required to know a logical name under
which application can find an instance of the javax.sql.DataSource interface
using Java Naming and Directory Interface (JNDI). This is a common way to
obtain connections in web and application servers.

In order to obtain a connection via DataSource object, you can use code showed
on Illustration 2.6. This code assumes that you have correctly configured JNDI
properties. For more information about configuring JNDI please refer to the

Chapter 2. Obtaining a connection 12

documentation provided with your web or application server.

package hello;

import java.sql.*;
import javax.sql.*;
import javax.naming.*;

public class HelloServerJNDI {

 public static void main(String[] args) throws Exception {

 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/SomeDB");

 Connection connection = ds.getConnection();

 try {

 // do something here...

 } finally {
 connection.close();
 }

 }

}

Illustration 2.6: Typical way to obtain JDBC connection via JNDI.

Usually binding between the DataSource object and its JNDI name happens in
the configuration of your web or application server. However under some
circumstances (e.g. you are developing your own JNDI-enabled application
server/framework) you have to do this yourself. You can use the code snippet for
this purpose showed on Illustration 2.7.

import javax.naming.*;

import org.firebirdsql.pool.*;

...

FBWrappingDataSource ds = new FBWrappingDataSource();

ds.setDatabase("localhost/3050:C:/database/employee.gdb");
ds.setUser("SYSDBA");
ds.setPassword("masterkey");

InitialContext ctx = new InitialContext();

ctx.bind("jdbc/SomeDB", ds);

Illustration 2.7: Programmatic way to instantiate javax.sql.DataSource implementation.

DataSource implementation supports all connection properties available to the
DriverManager interface, but also it supports additional properties that control
connection pooling. For more information on this topic please read the
“Connection Pooling” chapter.

Driver types

As it was mentioned in the Chapter 3. Jaybird Architecture, Jaybird supports
multiple implementations of the GDS interface. The original Jaybird distribution
contains two main categories of the GDS implementation: pure Java

Chapter 2. Obtaining a connection 13

implementation of the Firebird wire protocol and a JNI proxy that can use a
dynamically linked library with a compatible API.

Below you find the list of existing types and their short configuration description
with the corresponding JDBC URLs that should be used to obtain the connection
of desired type. The type of the JDBC driver for the javax.sql.DataSource is
configured via corresponding property.

PURE_JAVA type

The PURE_JAVA driver type uses pure Java implementation of the Firebird wire
protocol. This type is recommended for connecting to a remote database server
using TCP/IP sockets. No installation is required except adding the JDBC driver
to the class path. This type of driver provides best performance when connecting
to the remote server.

In order to obtain connection using the PURE_JAVA driver type you have to use
JDBC URL that was shown on Illustration 2.2:

jdbc:firebirdsql:host[/port]:<path to database>

When using javax.sql.DataSource implementation, you can specify either
"PURE_JAVA" or "TYPE4" driver type, however this type is used by default.

NATIVE and LOCAL types

The NATIVE and LOCAL driver types use a JNI proxy to access the Firebird
client library and requires installation of the Firebird client. The NATIVE driver
type is used to access the remote database server, the LOCAL type accesses the
database server running on the same host by means of IPC. Performance of
NATIVE driver is approximately 10% lower compared to the PURE_JAVA
driver, but LOCAL type has up to 30% higher performance compared to the
PURE_JAVA driver when connecting the server on the same host. This is mostly
due to the fact that TCP/IP stack is not involved in this mode.

In order to instantiate a connection using the NATIVE JDBC driver to connect to
a remote server you have to use the following JDBC URL with new subprotocol:

jdbc:firebirdsql:native:host[/port]:<path to database>

When connecting to a local database server using the LOCAL driver, you should
use following:

jdbc:firebirdsql:local:<absolute path to database>

Additionally to the Firebird client library installation, driver requires a JNI proxy
to be available to the JVM. The JNI proxy is a platform-dependent dynamically
linked library that translates GDS calls into Firebird API calls.

Windows

On Windows, the JNI proxy is represented by a dynamically linked library (DLL)
jaybird21.dll. You have to make this library available through PATH
environment variable. Alternatively you can specify the directory containing this
DLL in java.library.path system property.

For example, if you put library in the current directory you have to use the
following command to start Java:

Chapter 2. Obtaining a connection 14

java -Djava.library.path=. com.mycompany.MyClass

Linux

On Linux JNI proxy is represented by a shared library libjaybird21.so. It must
be available through the LD_PATH environment variable. Usually shared libraries
are stored in the /usr/lib/ directory; however you will need root permissions to
copy libjaybird21.so there. Alternatively you can specify directory containing
the proxy in java.library.path Java system property. See Windows example
above for more details.

Limitations

Firebird client library is not thread-safe when connecting to a local database
server using IPC. Jaybird provides the necessary synchronization in Java code
using a static object instance. However, this static object instance is local to the
classloader that has loaded the Jaybird classes.

In order to guarantee correct synchronization , the Jaybird driver must be loaded
by the top-most classloader. For example, when using the Type 2 JDBC driver
with a web or application server, you have to add the Jaybird classes to the main
classpath (for example, to the lib/ directory of your web or application server),
but not to the web or J2EE application, e.g. the WEB-INF/lib directory.

EMBEDDED type

The Embedded server JDBC driver is the Type 2 JDBC driver that rather than
using the Firebird client library, loads Firebird embedded server library instead.
This is the highest performance type of JDBC driver for accessing local databases,
as the Java code accesses the database file directly.

In order to obtain a connection via DriverManager you have to use following
URL:

jdbc:firebirdsql:embedded:<path to database>

jdbc:firebirdsql:embedded:host[/port]:<path to database>

When host and, optionally, port is specified, embedded server acts as client library
(i.e. you get the same Type 2 behavior as you would get with using “native”).

Installation of the JNI proxy is same as described in the “NATIVE and LOCAL
types” chapter.

Limitations

The Firebird embedded server for Linux is not thread safe. Jaybird provides the
needed synchronization in Java code, similar to the one described for the Type 2
JDBC driver. This implies the same restrictions on the classloader that will load
the Jaybird classes.

The Firebird embedded server for Windows opens databases in exclusive mode.
This means that this particular database is accessible only to one Java virtual
machine. There is no exclusive mode on the POSIX platform. When the same
database file is accessed by multiple JVM instances, database will be corrupted!

Chapter 2. Obtaining a connection 15

Connection Pooling

Each time a connection is opened via DriverManager, a new physical connection
to server is opened. It is closed when the connection is closed. In order to avoid
the overhead of creating connections, the DataSource implementation can
maintain a cache of open physical connections that can be reused between user
sessions.

The javax.sql.ConnectionPoolDataSource implementation

FBConnectionPoolDataSource is an implementation of the
javax.sql.ConnectionPoolDataSource interface, which is used by an
application to obtain PooledConnection objects. A PooledConnection instance
represents a physical connection to a database and is a source of logical
connection. Closing a logical connection returns the physical connection back into
the pool. Additionally, the logical connection provides caching of prepared
statements, which improves application performance even more than connection
pooling.

Usually the connection pool is specified in web or application server
configuration. However, you can instantiate it also inside the application.

Chapter 2. Obtaining a connection 16

package hello;

import java.sql.*;
import javax.sql.*;

import org.firebirdsql.pool.*;

public class HelloConnectionPool {

 public static void main(String[] args) throws Exception {

 org.firebirdsql.pool.FBConnectionPoolDataSource pool =
 new org.firebirdsql.pool.FBConnectionPoolDataSource();

 pool.setMaxPoolSize(5);
 pool.setMinPoolSize(2);
 pool.setMaxStatements(10);
 pool.setMaxIdleTime(30 * 60 * 60);

 pool.setDatabase("localhost/3050:C:/db/employee.fdb");
 pool.setUser("SYSDBA");
 pool.setPassword("masterkey");

 // obtain a physical connection to the database
 PooledConnection pooledCon = pool.getPooledConnection();

 // obtain a wrapped connection
 Connection connection = pooledCon.getConnection();
 try {

 // do something here...

 } finally {

 // release the connection back to pool
 connection.close();
 }

 }

}

Illustration 2.8.: Example of instantiating and using the javax.sql.ConnectionPoolDataSource
implementation

The code on Illustration 2.8 we perform the following steps:

1. Create a connection pool object. In this example we create instance
implementing the javax.sql.ConnectionPoolDataSource interface.

2. Now we specify the pooling properties: maximum of 5 physical connections,
with minimum of 2, and each connection will maintain a cache of 10 prepared
statements of the same type (i.e. with the same SQL). Connections in the pool
that are idle for more than half an hour (30 * 60 * 60 seconds) are closed
automatically.

3. After specifying the pooling properties we set the database connection
properties. In our case that is only database path, user name and password, but
also any other supported property can be set here.

4. Having configured the data source, we obtain the physical connection to the
database. Our data source implementation will check the internal connection
pool and will open a new physical connection to the database if the pool is
empty. An instance of javax.sql.PooledConnection represents a physical
connection to the database. Calling the PooledConnection.close() method

Chapter 2. Obtaining a connection 17

6

5

4

3

2

1

will close the physical connection to the database and will remove this
connection from the pool.

5. Now we obtain regular JDBC connection to the database and perform the
needed work.

6. At the end of processing we close the JDBC connection, but note that we do
not close the physical connection, but simply forget the reference to it.

Please pay especial attention to the steps 4, 5 and 6. They show the typical
approach of using the JDBC connections in case of connection pooling. The step 4
is to some extent optional – if we use javax.sql.DataSource connection
factory, it provides already wrapped JDBC connections doing the step 4
implicitly.

However it must be a rule for an application to use the try/finally block to
release the connection. In the XXX chapter we will discuss the transaction
boundaries and how they can influence that connection handling, but for the code
running in the J2EE environment the try/finally guarantees that connections
are never leaked in the application code, the container will take care for the rest.

List of all pool-related properties can be found in “Pool Properties” and “Runtime
Pool Properties”.

Using FBConnectionPoolDataSource with JNDI

Connection pooling is tightly coupled with the Java Naming and Directory
Interface, which provides a network-transparent hierarchical mapping of the
symbolic references to objects. As it was showed in Illustration 2.6, pooled
connections are obtained from JNDI using a symbolic reference, a JNDI name.
When an application binds an object into JNDI, typically following happens:

• If object implements java.io.Serializable interface, object is directly
bound to the specified name. If application accesses the JNDI from the local
JVM, a reference to the object bound in JNDI is returned. If application
accesses the JNDI from remote JVM, a serialized copy of an object is sent over
the wire to the remote node, where it is deserialized and returned to the
application

• If object implements javax.naming.Referencable interface, JNDI
implementation binds the so-called reference instead of an object. Reference
contains all necessary information to reconstruct the object regardless of the
JVM in which this operation happens. This is performed with the help of so-
called object factories. Object factory knows how to convert instance of
javax.naming.Reference into an appropriate object.

• If object implements none of the above mentioned interfaces, the behavior is
undefined. Usually JNDI provider allows to access bind objects in local JVM,
but when access happens in remote JVM, an exception is thrown.

FBConnectionPoolDataSource implements both java.io.Serializable and
javax.naming.Referencable interfaces. Illustration 2.9 shows how to create

Chapter 2. Obtaining a connection 18

and bind the JNDI reference for a FBConnectionPoolDataSource class:

package hello;

import javax.naming.*;
import org.firebirdsql.pool.*;

public class HelloBindJndi {

 public static void main(String[] args) throws Exception {

 Reference ref = new Reference(
 "org.firebirdsql.pool.FBConnectionPoolDataSource");

 ref.add(new StringRefAddr("maxPoolSize", "5"));
 ref.add(new StringRefAddr("minPoolSize", "2"));
 ref.add(new StringRefAddr("maxStatements", "10"));
 ref.add(new StringRefAddr("maxIdleTime", "108000"));

 ref.add(new StringRefAddr("database",
 "localhost/3050:C:/db/employee.fdb));
 ref.add(new StringRefAddr("user", "SYSDBA"));
 ref.add(new StringRefAddr("password", "masterkey"));

 Context ctx = new InitialContext();
 ctx.bind("jdbc/test", ref);

 }

}

Illustration 2.9.: Example of initializing and binding FBConnectionPoolDataSource reference.

1. Create reference instance for the FBConnectionPoolDataSource. According
to the JNDI specification we could specify another type here, however the
identifier specified here is used later by the object factory to check whether it is
responsible for materializing the specified reference. Our object factory accepts
only references with the ID equal to
"org.firebirdsql.pool.FBConnectionPoolDataSource".

2. Fill the pooling properties as reference addresses.

3. Fill the database connection properties. Steps 2 and 3 look quite strange from
the programming point of view, especially compared to the Illustration 2.8.
However, this approach is very elegant if we consider reading the configuration
from the file. In this case we no longer have to use Java reflection to set needed
properties – object factory does it for us.

4. Create JNDI initial context and bind the reference to the specified name.

Chapter 2. Obtaining a connection 19

3

4

1

2

Illustration 2.10 Shows how to access the FBConnectionDataSource bound in
previous example:

package hello;

import java.util.*;
import javax.naming.*;
import org.firebirdsql.pool.*;

public class HelloLookupJndiFactory {

 public static void main(String[] args) throws Exception {

 Hashtable props = new Hashtable();

 props.put(
 "java.naming.factory.initial",
 "com.sun.jndi.fscontext.RefFSContextFactory");

 props.put(
 "java.naming.factory.object",
 "org.firebirdsql.pool.FBConnectionPoolDataSource");

 Context ctx = new InitialContext(props);
 FBConnectionPoolDataSource pool =
 (FBConnectionPoolDataSource)ctx.lookup("jdbc/test");

 }

}

Illustration 2.10.: Example of accessing the FBConnectionPoolDataSource via reference.

1. Create an environment for the JNDI initial context.

2. Specify the “ java.naming.factory.initial” property. Our example uses Sun file
system JNDI provider. In J2EE environment this property should match the
one used by J2EE container. Additionally one has to specify the
“java.naming.provider.url” when accessing remote JVM.

3. Specify the “ java.naming.factory.object” property. In our case it contains only
one object factory – our pool class itself. In J2EE environment one has to
configure the environment correctly.

4. Create JNDI context and perform the JNDI lookup.

The javax.sql.DataSource implementation

The example before showed how to work with the Jaybird 2.1 connection pool.
However, the javax.sql.ConnectionPoolDataSource is usually not accessible
to the application code, as it provides the ability to manipulate physical
connections. In a J2EE environment application accesses the instance of
javax.sql.DataSource interfaces instead. This is usually done by wrapping the
connection pool by a simple implementation of the latter interface. Jaybird 2.1
provides such implementation in org.firebirdsql.pool.SimpleDataSource
class that takes javax.sql.ConnectionPoolDataSource as parameter in
constructor.

Additionally Jaybird 2.1 provides a class that can be used in the same was as the
FBConnectionPoolDataSource. Illustration 2.11 shows how to instantiate
FBWrappingDataSource implementation in a client application.

Chapter 2. Obtaining a connection 20

4

3

2

1

package hello;

import java.sql.*;
import javax.sql.*;

import org.firebirdsql.pool.*;

public class HelloConnectionPool {

 public static void main(String[] args) throws Exception {

 org.firebirdsql.pool.FBWrappingDataSource pool =
 new org.firebirdsql.pool.FBWrappingDataSource();

 pool.setMaxPoolSize(5);
 pool.setMinPoolSize(2);
 pool.setMaxStatements(10);
 pool.setMaxIdleTime(30 * 60 * 60);

 pool.setDatabase("localhost/3050:C:/db/employee.gdb");
 pool.setUser("SYSDBA");
 pool.setPassword("masterkey");

 // no step 4 as in previous example

 // obtain a wrapped connection
 Connection connection = pool.getConnection();
 try {

 // do something here...

 } finally {

 // release the connection back to pool
 connection.close();
 }

 }

}

Illustration 2.11.: Example of instantiating and using the javax.sql.DataSource implementation

This class is called “wrapping” because it wraps the connection pool and
delegates all calls to the underlying implementation. As you can see, the code is
very similar to the Illustration 2.8, only few places are different. Please note, that
there is no longer Step 4, the wrapper does this automatically in
getConnection() method used in Step 5.

The javax.sql.XADataSource implementation

JDBC 2.0 specification introduced the javax.sql.XADataSource interface that
should be used to access connections that can participate in distributed
transactions with JTA-compatible transaction coordinator. This gives applications
possibility to use two-phase commit to synchronize multiple resource managers.

Jaybird 2.1 does not have separate class, but FBConnectionPoolDataSource also
implements the javax.sql.XADataSource interface. For information how to
instantiate this class please see Illustration 2.8.

Applications usually do not need to access the javax.sql.XADataSource directly,
this is task for a J2EE container. Chapter XXX contains more detailed description

Chapter 2. Obtaining a connection 21

6

5

4

3

2

1

of distributed transactions and contains code to access and manipulate connections
that participate in distributed transactions.

Chapter 2. Obtaining a connection 22

Chapter 3.

3. Handling exceptions

An exception handling is probably the most important aspect that directly affects
the stability of the application. Correct handling of the error cases guarantees
correct functioning of the client code as well as the database server. Additionally,
all methods of the interfaces defined in the JDBC specification throw instances of
java.sql.SQLException to notify about all error conditions that happen during
request processing. The SQLException is checked exception, which forces Java
programmer to either handle it with the try/catch clause or redeclare it in the
method signature.

Working with exceptions

The exception handling becomes even more important if we consider that this
topic is either ignored or presented in incorrect form in the most JDBC tutorials.
The official JDBC tutorial from Sun Microsystems briefly mentions that
exceptions should be handled by using try/catch blocks only at the end of the
course, but neither reasons of doing this nor the best practices are presented.

There are few reasons to think about exception handling in your applications
before you start coding. First of all, it is very hard to change the exception
handling pattern in the existing code. The changes will affect all layers above the
place where the changes in exception handling are made and the new application
must be thoroughly tested after the change.

Another reason was already mentioned on the beginning of this chapter –
instances of java.sql.SQLException is the only way for the RDBMS server to

notify about the error condition that happened during request processing. By
checking the error code which is sent with the exception application can try to
recover from the error.

And the last but not the least issue is the resource management. When exception
happens in the method, the execution flow of Java code differs from the normal
one and only correctly coded application will ensure that all allocated resources
will be released. The resources in our case are JDBC connections, statement,
prepared statement and callable statement objects, result sets, etc. All these
objects not only take memory in the Java Virtual Machine in which application
runs, but also consume memory on the server, which in worst cases can lead to
Denial-of-Service attack.

A good exception handling strategy requires you do distinguish three kinds of
error conditions:

• errors that database access layer can detect and correctly handle; for example,
the application might decide to re-execute the business transaction if database
server returned a deadlock error;

• errors that database access layer can detect, but is unable to handle; usually
those are all database errors that do not have special handling routines;

• errors that database access layer cannot detect without additional code unrelated
to the functionality of this layer; basically, all runtime exceptions fall into this
category.

The handling strategy then consists of

• processing the selected error codes for cases described above;

• converting the generic SQLException into generic business error in the
application (this can be throwing some generic exception defined in the
application, but can also be an entry in the application event log and short
message that asks to retry the operation later);

• some emergency tactics, since the error that happened (e.g.
NullPointerException or OutOfMemoryError) was not considered while the
application was created, thus possibly leaving it in an unknown state; further
operating should be considered dangerous and the corresponding execution
branch has to be halted.

The problem can be solved if resource allocation and deallocation happens in the
same code block and is protected with try/finally block and the code to recover
from error conditions should use try/catch blocks. Example of such error and
resource handling code is presented on Illustration 3.1.

Chapter 3. Handling exceptions 24

PreparedStatement updateSales = null;

String updateString = "update COFFEES " +
 "set SALES = ? where COF_NAME like ?";

updateSales = con.prepareStatement(updateString);

try {

 int [] salesForWeek = {175, 150, 60, 155, 90};
 String [] coffees = {"Colombian", "French_Roast",
 "Espresso", "Colombian_Decaf",
 "French_Roast_Decaf"};

 int len = coffees.length;
 for(int i = 0; i < len; i++) {

 updateSales.setInt(1, salesForWeek[i]);
 updateSales.setString(2, coffees[i]);

 try {
 updateSales.executeUpdate();

 } catch(SQLException ex) {

 if (ex.getErrorCode() == ...)
 // do something
 else
 throw new BusinessDBException(ex);

 }

 }

} finally {

 updateSales.close();

}

Illustration 3.1.: Typical resource allocation and error handling patterns

The nested try/catch block shows you an example of handling a deadlock error if
it happens (first scenario according to our classification), otherwise the exception
is converted and passed to the upper layers (second scenario). As you see, there is
no special treatment to the third scenario.

A possible bug in the JDBC driver could have generated runtime exception in the
PreparedStatement.executeUpdate() method, which would lead to the
statement handle leakage if no try/finally block is used to do the resource cleanup.
As a rule of thumb, the “try” keyword should go right after the resource was
allocated and the “finally” keyword should be placed right before the resource is
freed.

Such coding practice might look weird, because on the first sight the whole
purpose of using the PreparedStatement is neglected – statement is prepared,
used only once and then deallocated. However, when this practice is combined
with the connection and statement pooling, it brings enormous advantage to the
application code. The code becomes much more manageable – resource
allocations and deallocations happen in the same method and software developer
must not remember the places where the same prepared statement might be used –
statement pool will either reuse the statement or it will prepare a new one, if it
detects that all pooled prepared statements are currently in use. As a side effect,

Chapter 3. Handling exceptions 25

application will always use the minimum number of statements handles, which in
turn reduces the used resources on the server side.

Warnings

Some errors returned by the Firebird server are treated as warnings. They are
converted into instances of java.sql.SQLWarning class in the JDBC layer. These
exceptions are not thrown from the driver methods, but added to a connection
instance. Currently no warning is added to Statement or ResultSet objects.

Each next warning is appended to the tail of the warning chain. In order to read
the warning chain, use the code presented on Illustration 3.2.

import java.sql.*;

....

SQLWarning warning = connection.getWarnings();

while (warning != null) {

 // do something with the warning

 warning = warning.getNextWarning();

}

Illustration 3.2.: Example how to work with the exceptions

In order to clear existing warning, call Connection.clearWarnings() method.

java.sql.SQLException in Jaybird

An SQLException is a special exception that is thrown by the JDBC connectivity
component in case of an error. Each instance of this exception is required to carry
the vendor error code (if applicable) and a SQL state according to the X/Open
SQLstate or SQL 2003 specifications.

When multiple SQL errors happened, they are joined into a chain. Usually the
most recent exception is thrown to the application, the exceptions that happened
before can be obtained via SQLException.getNextException() method.

Unfortunately the JDBC specification does not provide a usable exception
hierarchy that would allow application to react on the error situations using
regular exception handling rather than checking the error code. Only two
subclasses are defined in JDBC 3.0 specification:

• java.sql.DataTruncation exception is thrown when data truncation error
happens.

• java.sql.BatchUpdateException exception is thrown when batch of the
statement did not execute successfully and contains the result of batch
execution.

Upcoming JDBC 4.0 will address this issue by introducing better hierarchy of the
exceptions and it will be supported by the next versions of Jaybird.

Each of three layers in Jaybird use exceptions most appropriate to the specific
layer.

Chapter 3. Handling exceptions 26

• org.firebirdsql.gds.GDSException is an exception that directly
corresponding to the error returned by the database engine. Instances of this
class are thrown by the GDS implementations. Upper layers either convert these
exceptions into the ones appropriate to that layer or catch them if driver can
handle the error condition.

• Subclasses of javax.resource.ResourceException are thrown by the JCA
layer when an error happens in the JCA-related code. Upper layer converts this
exception into a subclass of java.sql.SQLException. If the
ResourceException was caused by the GDSException, latter is extracted
during conversion preserving the error code. If ResourceException was
caused by an error condition not related to an error returned by the database
engine, error code of the SQLException remains 0.

• Subclasses of javax.transaction.XAException are thrown when an XA
protocol error happens in JCA layer. Similar to the previous case, XAException
can wrap the GDSException, which are extracted during exception conversion
to preserve the error code.

• Subclasses of java.sql.SQLException are thrown by the JDBC layer. Driver
has also few subclasses that might be interesting to the application:

• org.firebirdsql.jdbc.FBDriverConsistencyCheckException – this
exception is thrown when driver detects an internal inconsistent state. SQL
state is SQL_STATE_GENERAL_ERROR.

• org.firebirdsql.jdbc.FBDriverNotCapableException – this exception
is thrown when an unsupported method is called. SQL state is
SQL_STATE_DRIVER_NOT_CAPABLE.

• org.firebirdsql.jdbc.FBSQLParseException – this exception is thrown
when incorrect escaped syntax is detected. SQL state is
SQL_STATE_INVALID_ESCAPE_SEQ.

• org.firebirdsql.jdbc.field.TypeConversionException – this
exception is thrown when the driver is asked to perform a type conversion
that is not defined in the JDBC specification. For a table of allowed type
conversions see Data Type Conversion Table.

SQL states

Jaybird supports the SQL states from the X/Open standard, however only few
states nicely map into the Firebird error codes. Below is the table containing the
reported SQL states.

Constant name Constant value

SQL_STATE_INVALID_CON_ATTR "01S00"

SQL_STATE_NO_ROW_AVAIL "01S06"

SQL_STATE_GENERAL_ERROR "HY00"

SQL_STATE_DRIVER_NOT_CAPABLE "HYC00"

SQL_STATE_INVALID_COLUMN "HY02"

Chapter 3. Handling exceptions 27

Constant name Constant value

SQL_STATE_INVALID_PARAM_TYPE "HY105"

SQL_STATE_INVALID_ARG_VALUE "HY009"

SQL_STATE_WRONG_PARAM_NUM "07001"

SQL_STATE_NO_RESULT_SET "07005"

SQL_STATE_INVALID_CONVERSION "07006"

SQL_STATE_CONNECTION_CLOSED "08003"

SQL_STATE_CONNECTION_FAILURE_IN_TX "08007"

SQL_STATE_COMM_LINK_FAILURE "08S01"

SQL_STATE_INVALID_ESCAPE_SEQ "22025"

Application can use the SQL state codes in the error handling routines which
should handle errors that are returned from different databases. But since there is
little agreement between RDBMS vendors, this method can be used only for very
coarse error distinction.

Useful Firebird error codes

Contrary to the SQL states, the Firebird native error codes are extremely useful to
determine the type of an error that happened.

Here you can find a short list of error codes, symbolic names of a corresponding
constant in a org.firebirdsql.gds.ISCConstants class, the error message and
short explanation of an error.

DDL Errors

Happen during execution of the DDL requests and two primary error codes are
used in Firebird while executing the DDL operations. There are few other rare
cases not mentioned here, but the corresponding error messages contain enough
information to understand the reason of an error.

335544351L isc_no_meta_update "unsuccessful metadata update"

Error happens when the requested DDL
operation cannot be completed, for
example application tries to define a
primary key that will exceed the maximum
allowed key size.

335544510L isc_lock_timeout In combination with isc_obj_in_use
(335544453L) means that the DDL
command tries to modify an object that is
used in some other place, usually in
another transaction. The complete error
message will contain the name of the
locked object.

335544569L isc_dsql_error If the third error code is either
isc_dsql_datatype_err or
isc_dsql_command_err, then additional
error codes and arguments specify the

Chapter 3. Handling exceptions 28

reason why the operation had failed.

Lock Errors

Lock errors are reported by Firebird primarily when application tries to modify a
record which is already modified by a concurrent transaction. Depending on the
transaction parameters such error can be reported either right after detecting it or
after waiting some defined timeout hoping that concurrent transaction will either
commit or rollback and eventually release the resource. More information on
transaction locking modes can be found in Chapter 6, Using transactions.

335544345L isc_lock_conflict "lock conflict on no wait
transaction"

This error happens when a “no wait”
transaction needs to acquire a lock but
finds another concurrent transaction
holding a lock.

Instead of waiting the predefined timeout
hoping that concurrent transaction will
either commit or rollback, an error is
returned to notify an application about the
situation.

335544510L isc_lock_timeout "lock time-out on wait
transaction"

Similar to the isc_deadlock, but is
returned when the lock timeout that was
specified for the current transaction expired
while waiting for a lock.

Another source of this error are DDL
operations that try to obtain a lock on a
database object that is currently used in
some other place.

335544336L isc_deadlock "deadlock"

Two transactions experience a deadlock
when each of them has a lock on a
resource on which another one is trying to
obtain a lock.

Referential Integrity Errors

Referential integrity constrains ensure that database remains in a consistent state
after the DML operation and/or whole transaction is completed. Three primary
error codes are returned when the defined constraints are violated. The error
messages are self-explanatory.
335544665L isc_unique_key_viola

tion
violation of PRIMARY or UNIQUE
KEY constraint "{0}" on table
"{1}"

335544558L isc_check_constraint Operation violates CHECK
constraint {0} on view or table
{1}

335544466L isc_foreign_key violation of FOREIGN KEY
constraint "{0}" on table "{1}"

Chapter 3. Handling exceptions 29

DSQL Errors

This group contains secondary codes for the primary error code isc_dsql_error
(335544569L), that has a message "Dynamic SQL Error".

335544573L isc_dsql_datatype_err "Data type unknown"

Usually this error is reported during DDL
operation when the specified data type is
either unknown or cannot be used in the
specified statement. However it also can
happen in DML operation, e.g. when an
ORDER BY clause contains unknown
collation.

isc_dsql_command_err "Invalid command"

Error happens either during parsing the
specified SQL request or by handling the
DDL command.

Other Errors

This table contains other errors that might be interesting to the application
developer, however they do not fall into any of the previous categories.

335544321L isc_arith_except "arithmetic exception, numeric
overflow, or string truncation"

Happens at runtime when an arithmetic
exception happens, like division by zero or
the numeric overflow (e.g. number does not
fit the 64 bits limit).

Another source of these errors are all string
operations, like string concatenation
producing too long string, impossibility to
transliterate characters between character
sets, etc.

Future versions of Firebird will provide a
secondary code to distinguish the exact
reason of an error.

335544348L isc_no_cur_rec "no current record for fetch
operation"

Happens when application asks Firebird to
fetch a record, but no record is available for
fetching.

Java applications should never get this
error, since checks in the JDBC driver
prevent application from executing fetch
operation on the server side.

335544374L isc_stream_eof "attempt to fetch past the last
record in a record stream"

Application tries to execute fetch operation
after all records had been already fetched.

Similar to the previous error, Java
application should not get this error due to
the checks that happen before issuing the
fetch request to the server.

335544517L isc_except "exception {0}"

Chapter 3. Handling exceptions 30

An custom exception has been raised on
the server. Java application can examine
the underlying GDSException to extract
the exception message.

335544721L isc_network_error Unable to complete network
request to host "{0}"

This error is thrown when Java application
cannot establish connection to the
database server due to a network issues,
e.g. host name is specified incorrectly,
Firebird had not been started on the remote
host, firewall configuration prevents client
from establishing the connection, etc.

Chapter 3. Handling exceptions 31

Chapter 4.

4. Executing statements

After obtaining a connection, the next thing to do is to execute the SQL statement.
JDBC specification distinguishes three kinds of statements – regular statements
that are execute fixed SQL requests, prepared statements used to executed SQL
code with parameters in it and callable statements that are used to execute stored
procedures.

The java.sql.Statement interface

The java.sql.Statement interface is the simplest interface to execute SQL
statements. It distinguishes only three types of them:

• statements that return results, or, in other words, queries;

• statements that change the state of the database but return no results;

• INSERT statements that return the values of the columns which were generated
by the database engine while inserting the record.

Let's check one of the typical usages showed on Illustration 4.1. In general the
usage pattern of the statement consists of three steps

 Statement stmt = connection.createStatement();

 try {

 ResultSet rs = stmt.executeQuery(
 "SELECT firstName, lastName FROM users" +
 " WHERE userId = 5");

 rs.next();

 String firstName = rs.getString(1);
 String lastName = rs.getString(2);

 } finally {
 stmt.close();
 }

Illustration 4.1: Typical way to execute query to get information about the user.

:

1. Create a Statement object by calling the createStatement() method of the
Connection object.

2. Use the Statement object by calling its methods, in our case we execute simple
query SELECT firstName, lastName FROM users WHERE userId = 5.
Processing of the query result will be discussed in details in the next chapter.

3. Close the statement to release all allocated resources. In our example this is
done in the finally section of the try/finally block.

The fact that connection object is a factory for the statement objects puts a
constraint on the object lifetime – statements are bound to the connection; when
the connection is closed, all statements that were created by that connection
become invalid and the resources allocated by them are released. However,
despite that fact that the resources are finally released, it is strongly recommended
to use the try/finally block, to guarantee that resources are released as soon as
possible because of the reasons that will be discussed later.

Statement can be executed using the following methods:
• Statement.executeQuery(String) – executes a SELECT statement and

returns a result set. If the specified statement is not a SELECT statement, an
SQLException is thrown after the statement execution.

• Statement.executeUpdate(String) – executes INSERT, UPDATE,
DELETE or DDL1 statements and returns the number of updated rows. If the
specified statement is a query, an SQLException is thrown.

• Statement.execute(String) – executes a statement and returns true when
the statement returned a result set, otherwise an update was executed and false
is returned. You can use Statement.getResultSet() method to get the result
of the executed query or you can use Statement.getUpdateCount() when you
have executed update statement.

Statement is closed by calling the Statement.close() method. After this the
statement object is invalid and cannot be used anymore.

1 DDL – Data Definition Language. This term is used to group all statements that are used to
manipulate database schema, i.e. creation of tables, indices, views, etc.

Chapter 4. Executing statements 34

3

2

1

It is also allowed to use the same object to execute different types of queries one
after other. The Illustration 4.2 contains a short example in which application first
performs a select to find the ID of the user 'Joe Doe', and if the record is found, it
enables his account.

Statement stmt = connection.createStatement();
try {
 ResultSet rs = stmt.executeQuery(
 "SELECT userId FROM users " +
 "WHERE lastName = 'Doe' AND firstName = 'Joe'");

 if (rs.next()) {
 int userId = rs.getInt(1);
 int rowsUpdated = stmt.executeUpdate(
 "UPDATE accounts SET accountEnabled = 1 " +
 "WHERE userId = " + userId);

 if (rowsUpdated == 0)
 rowsUpdated = stmt.executeUpdate(
 "INSERT INTO accounts (userId, enabled) " +
 "VALUES (" + userId + ", 1)");

 if (rowsUpdated != 1)
 throw new SomeException(
 "User was not updated correctly.");

 }

} finally {
 stmt.close();
}

Illustration 4.2: Using the same statement object multiple times to enable user account.

The way the code is constructed is quite dangerous because of the result set
lifetime constraints that are put by the JDBC specification, please read the chapter
where result sets are discussed for more details. However, here it is done
intentionally to emphasize that the single object is used to execute SELECT and
UPDATE/INSERT statements. It also shows how to check whether the executed
statement modified expected number of rows – application first tries to update the
account and only if no rows were updated, it inserts new record into the accounts
table.

When application needs to execute DDL statements, it is recommended to use the
Statement.execute(String) method, as in this case amount of modified
records makes little sense. Illustration 4.3 shows an example of creating database

Chapter 4. Executing statements 35

tables using the above mentioned method.

Statement stmt = connection.createStatement();
try {
 DatabaseMetaData metaData = connection.getMetaData();

 ResultSet tables = metaData.getTables(
 null, null, "customer", new String[]{"TABLE"});

 if (!tables.next())
 stmt.execute("CREATE TABLE customer(" +
 "customerId INTEGER NOT NULL PRIMARY KEY, " +
 "firstName VARCHAR(20) NOT NULL, " +
 "lastName VARCHAR(40) NOT NULL)");

} finally {
 stmt.close();
}

Illustration 4.3: Example of creating database tables.

First, application checks the existence of the table in the database by calling the
DatabaseMetaData.getTables(String, String, String, String[])
method that returns a result set describing the database tables matching the
specified search pattern. First two parameters of this method, the database catalog
and schema names, are set to null as Firebird supports neither catalogs nor
schemas. Third parameter is the table name search pattern, in our case we search
for the table "customer". Last parameter is the list of table types to check, in our
case we check for the "TABLE" type. Other tables types are "SYSTEM TABLE" and
"VIEW".

After that application checks if the result set is empty by calling the
ResultSet.next() method. If no "customer" table was found, application
creates new table with three columns.

As it was already mentioned, the Statement.execute(String) method can also
be used to execute statements of the unknown type.

Statement stmt = connection.createStatement();
try {
 boolean hasResultSet = stmt.execute(sql);

 if (hasResultSet) {
 ResultSet rs = stmt.getResultSet();
 ...
 } else {
 int updateCount = stmt.getUpdateCount();
 ...
 }

} finally {
 stmt.close();
}

It is worth mentioning, that according to the JDBC specification getResultSet()
and getUpdateCount() methods can be only called once per result, and in case of
using Firebird, that means once per executed statement, since Firebird does not
support multiple results from a single statement. Calling the methods the second
time will cause an exception.

Chapter 4. Executing statements 36

Statement behind the scenes

The example on Illustration 4.2 requires us to discuss the statement object
dynamics, its life cycle and how it affects other subsystems in details.

Statement dynamics

When the Java application executes statement, a lot more operations happen
behind the scenes:

1. A new statement object is allocated on the server. Firebird returns to the client
a 32-bit identifier of the allocated object, a statement handle, that must be used
in next operations.

2. An SQL statement is compiled into an executable form and is associated with
the specified statement handle.

3. Jaybird asks server to describe the statement and Firebird returns the
information about the statement type and possible statement input parameters
(we will discuss this with prepared statements) and output parameters, namely
a result set columns.

4. If no parameters are required for the statement, Jaybird tells Firebird to execute
statement passing the statement handle into corresponding method.

After this Jaybird has to make a decision depending on the operation that was
called.

• If Statement.execute() method was used, Jaybird only checks the statement
type to decide whether it should return true, telling the application that there is a
result set for this operation, or false, if statement did not return any result set.

• If Statement.executeUpdate() method was called Jaybird asks Firebird to
give the information about the number of affected rows. This method can be
called only if the statement type tells that no query can be returned by the
statement. When it is called for queries, an exception is thrown despite the fact
that the statement was successfully executed on the server.

• If Statement.executeQuery() method was called and statement type tells that
result set can be returned, Jaybird constructs a ResultSet object and returns it
to the application. No additional checks, like whether result set contains rows,
are performed, as it is the responsibility of the ResultSet object. If this method
is used for the statements that do not return result set, an exception is thrown
despite the fact that the statement was successfully executed on the server.

When the application does not need to know how many rows were modified, it
should use the execute() method instead of executeUpdate() one. This saves
additional call to the server to get the number of modified rows and significantly
increases the performance in the situations where network latency is comparable
with the statement execution times.

The execute() method is also the only method that can be used when the
application does not know what kind of statement is being executed (for example,
an application that allows the user to enter SQL statements to execute).

Chapter 4. Executing statements 37

After using the statement object application should close it. Two different
possibilities exist – to close the result set object associated with the statement
handle and to close the object completely.

If, for example, we want to reuse the statement object for another query, it is not
necessary to completely release the allocated structures. Jaybird is required only
to compile a new statement before using it, in other words we can skip the step 1.
This saves us one round-trip to the server over the network, which might improve
the application performance.

If we close the statement completely, the allocated statement handle is no longer
usable. Jaybird could allocate a new statement handle, however the
implementation does not allow to use the Statement object after close() method
has been called to comply with the JDBC specification.

Statement lifetime and DDL

The step 2 in the previous chapter is probably the most important, and usually,
most expensive part of the statement execution life cycle.

As it was already told, when Firebird server receives the “prepare statement” call,
it parses the SQL statement and converts it into the executable form – BLR
representation. BLR, a Binary Language Representation, contains low-level
commands to traverse the database tables, conditions that are used to filter
records, defines the order in which records are accessed, indices that are used to
improve the performance, etc.

When a BLR is prepared, it holds the references to all database object definitions
that are used during that statement execution. This mechanism preserves the
database schema consistency, it saves the statement objects from the “surprises”
like accessing the database table that is been accessed by some application.

However, holding a reference on the database objects has one very unpleasant
effect – it is not possible to upgrade the database schema, if there are active
connections to the database with open statements referencing the objects being
upgraded. In other words, if two application are running and one is trying to
modify the table, view, procedure or trigger definition while another one is
accessing those objects, the first application will receive an error 335544453
“object is in use”.

Therefore it is strongly recommended to close the statement as soon as it is no
longer needed. This invalidates the BLR and release all references to the database
objects, making them available for the modification.

Special care should be taken when the statement pooling is used (check the details
on page 42). In this case statements are not released even if the close() method
is called. The only possibility to close the pooled statements is to close the pooled
connections. Please check the corresponding chapter for more information.

The java.sql.PreparedStatement interface

As we have seen, Jaybird already performs internal optimization when it comes to
multiple statement execution – it can reuse the allocated statement handle in
subsequent calls. However this improvement is very small and sometimes can

Chapter 4. Executing statements 38

even be neglected when compared to the time needed to compile the SQL
statement into the BLR form.

The PreparedStatement interface addresses such inefficiency. An object that
implements this interface represents a precompiled statement that can be executed
multiple times. If we use the execution flow described in the “Statement
dynamics” chapter, it allows to go directly to the step 4 for the subsequent
executions.

However, executing the same statement with the same values makes little sense,
unless we want to fill the table with the same data, which usually is not the case.
Therefore, JDBC provides support for the parametrized statements – SQL
statements where literals are replaced with the question marks. Application is
required to fill the parameters before executing the statement.

Our first example in this chapter can be rewritten the way it is showed on
Illustration 4.4. At the first glance the code became more complicated without any

Chapter 4. Executing statements 39

visible advantage.

PreparedStatement stmt1 = connection.prepareStatement(
 "SELECT userId FROM users WHERE " +
 "lastName = ? AND firstName = ?");
try {
 stmt1.setString(1, "Doe");
 stmt1.setString(2, "Joe");
 ResultSet rs = stmt1.executeQuery();

 if (rs.next()) {
 int userId = rs.getInt(1);

 PreparedStatement stmt2 =
 connection.prepareStatement(
 "UPDATE accounts SET accountEnabled = 1 " +
 "WHERE userId = ?");

 int rowsUpdated;

 try {
 stmt2.setInt(1, userId);

 rowsUpdated = stmt2.executeUpdate();

 if (rowsUpdated == 0) {
 PreparedStatement stmt3 =
 connection.prepareStatement(
 "INSERT INTO accounts " +
 "(userId, enabled) VALUES (?, 1)");
 try {
 stmt3.setInt(1, userId);
 rowsUpdated = stmt3.executeUpdate();
 } finally {
 stmt3.close();
 }

 if (rowsUpdated != 1)
 throw new SomeException(
 "User was not updated correctly.");
 } finally {
 stmt2.close();
 }
 }

} finally {
 stmt1.close();
}

Illustration 4.4: Example for user account update rewritten using prepared statements.

• First, instead of using the one statement object we have to use three – one per
statement.

• Second, before executing the statement we have to set parameters first. As it is
showed on the example, parameters are referenced by their position. The
PreparedStatement interface provides setter methods for all primitive types in
Java as well as for some widely used SQL data types (BLOBs, CLOBs, etc.).
The NULL value is set by calling the PreparedStatement.setNull(int)
method.

• Third, we are forced now to use three nested try/finally blocks, which
makes code less readable.

Chapter 4. Executing statements 40

So, where's the advantage? First of all, we can redesign our application to prepare
those statements before calling that code (for example in a constructor) and close
them when application is shut down. In this case the code is even more compact
(see Illustration 4.5). Unfortunately the application is now responsible for
prepared statement management. When connection is closed, the prepared
statement object will be invalidated, but the application will not be notified about
this fact. Also, if the application uses similar statements in different parts of the
application, the refactoring might affect many classes, possibly destabilizing the
code. So, the refactoring on the Illustration 4.5 is not something we want to do.

// prepared statement management

PreparedStatement queryStmt =
 connection.prepareStatement(queryStr);
PreparedStatement updateStmt =
 connection.prepareStatement(updateStr);
PreparedStatement insertStmt =
 connection.prepareStatement(insertStr);

......................

// query management

queryStmt.clearParameters();
queryStmt.setString(1, "Doe");
queryStmt.setString(2, "Joe");
ResultSet rs = queryStmt.executeQuery();

if (rs.next()) {
 int userId = rs.getInt(1);

 updateStmt.clearParameters();
 updateStmt.setInt(1, userId);
 int rowsUpdated = updateStmt.executeUpdate();

 if (rowsUpdated == 0) {
 insertStmt.clearParameters();
 insertStmt.setInt(1, userId);
 rowsUpdated = insertStmt.executeUpdate();

 if (rowsUpdated != 1)
 throw new SomeException(
 "User was not updated correctly.");
}

......................

// prepared statement cleanup

insertStmt.close();
updateStmt.close();
queryStmt.close();

Illustration 4.5: Rewritten example to let application manage prepared statements

The answer to the advantage question is hidden in the
prepareStatement(String) call. Since the same statement can be used for
different parameter values, connection object has a possibility to perform prepared
statement caching. JDBC driver can ignore the request to close the prepared
statement, save it internally and reuse it each time application asks to prepare an
SQL statement that is known to the connection.

Chapter 4. Executing statements 41

Prepared statement pooling

As it was mentioned before, connection pooling was introduced to reduce the time
needed to obtain a connection. Despite its rich features, the operation of obtaining
new connection in Firebird is cheap – usually connection pooling in an application
that heavily opens and closes connection brings ~5% of performance.
However there is one more way to speed the application. Execution of statements
in Firebird always happens in three steps:

• Compile the SQL statement into an internal BLR representation, save it in an
internal structure and assign a statement handle to a compiled statement.

• Execute the statement. First application checks whether the compiled statement
has any parameters and sets them if needed. After that statement is executed
using special call.

• Obtain results of the statement execution, for example number of updated rows
or a result set.

The obvious approach is to save the compiled statement and use it later. JDBC
specification already contains a java.sql.PreparedStatement interface exactly
for such purposes. Application prepares statement and uses it multiple times. This
approach works fine within the context of the same connection.

However, when connection pooling is used, application can no longer cache
prepared statements, since they are bound to the connection it obtained from the
pool. Application must close all prepared statements before giving connection
back to pool, but even if it does not do this, connection pool will perform this
automatically according to the JDBC specification. All advantages of the prepared
statements are undone – when application obtains next connection from the pool,
it must re-prepare statements.

Solution to the problem is to allow connection pool do statement pooling
internally. In this case all code remains compliant with the JDBC specification
saving all advantages of prepared statements.

Jaybird 2.1 connection pool has maxStatements property that controls the
behavior of the prepared statement pooling:

• If property is set to 0, no statement pooling is performed.

• If property is set to value n>0, connection pool will save maximum n
java.sql.PreparedStatement objects for the same SQL statement per
connection. Number of pooled PreparedStatement objects corresponding to
different SQL statements is not limited.

If application needs more prepared statements simultaneously (i.e. it prepares new
statement before releasing the one being currently in use), connection pool
transparently passes call to the connection object without pooling those
statements. In other words, the request to prepare statement is always satisfied
immediately, but only n prepared statements will remain pooled, rest will be
deallocated when PreparedStatement.close() method is called.

Following limitations apply:

• Firebird can have approx. 20.000 active statement handles per connection.
Additional care should be used when specifying the value of maxStatements

Chapter 4. Executing statements 42

property.

• Neither java.sql.Statement nor java.sql.CallableStatement objects are
pooled.

• A compiled statement in Firebird contains references on database objects
(tables, views, procedures, etc.) needed to execute that SQL command. When
connection pool is used, those references are not released preventing any
structure modification of the database objects used in the SQL statement.
Therefore, if structure modification is needed, connection pool with enabled
statement pooling must be shut down.

Prepared statement pooling – advantages and drawbacks

Originally statement pooling was introduced to preserve the PreparedStatement
advantages when connection pooling is used. Since the lifetime of the statement
object is bound to the connection object, prepared statement must be closed before
the connection is released to the connection pool.

When FBConnectionPoolDataSource or FBWrappingDataSource classes are
used to obtain database connections, prepared statement pooling is there for
granted. No application modification is needed to enable it, but the performance
improvement, depending on the application, might reach up to 50%.

Connections that were obtained via DriverManager do not provide statement
pooling and application must handle prepared statements itself.

The biggest drawback of the statement pooling is the fact that statement handle is
not released even when application does not need the statement, which in turn
prevents database administrator to upgrade the database schema. To overcome
this issue two additional methods were added to the connection pooling classes as
well as the possibility to switch the statement pooling off.

The restart() method defined in the FBConnectionPoolDataSource and in the
FBWrappingDataSource classes. This method closes all open connection residing
in the pool. Connections that are currently used in the application are marked as
“pending for close” and are deallocated as soon as application returns them to the
pool. This algorithm guarantees that eventually all connections will be closed and
statements will be deallocated without closing the working applications. The only
requirement for successful database schema upgrade is that the application does
not “lock” the database objects before the upgrade happens. Unfortunately there is
no easy application design guidelines that would guarantee the hot schema
upgrade.

The restart() method can also be used during database schema upgrade when
the Firebird ClassicServer is used. There is an old issue related to the architecture
of the ClassicServer – each instance of the database engine that is serving the
application connection caches the metadata information. So, even if the
application did not have any open statement and the database schema upgrade was
successful, open connections will not notice the change. The restart() method
softly closes all open connections that are not in use and ensures that new
connections obtained from the pool will use new ClassicServer instances with
fresh metadata information.

Chapter 4. Executing statements 43

The shutdown() method defined in the pool classes that marks the pool as invalid
and closes all open connection regardless whether they are currently in use or not.
This method can be used if a short-time application down time is acceptable. To
continue functioning application must construct a new pool and replace the old
one since shutdown() method invalidates the pool object.

The java.sql.CallableStatement interface

The CallableStatement interface extends PrepatedStatement with methods
for executing an retrieving results from stored procedures. It was introduced in
JDBC specification in order to unify access to the stored procedures across the
database system. The main difference to PreparedStatement is that the
procedure call is specified using the portable escaped syntax

procedure call ::= {[?=]call <params>}

params ::= <param> [, <param> ...]

Illustration 4.6: Unified escaped syntax for stored procedure execution.

Each stored procedure is allowed to take zero or more input parameters, similar to
the PreparedStatement interface. After being executed, procedure can either
return data in the output parameters or it can return a result set that can be
traversed. Though the interface is generic enough to support also database engines
that can return both and have multiple result sets. These features are of no interest
to Jaybird users, since Firebird does not support them.

The IN and OUT parameters are specified in one statement. The syntax above
does not allow to specify the type of the parameter, therefore additional facilities
are needed to tell the driver which parameter is will contain output values, the rest
are considered to be IN parameters.

Firebird stored procedures

Firebird stored procedures represent a piece of code written in the PSQL language
that allows SQL statement execution at the native speed of the engine and
provides capabilities for a limited execution flow control. The PSQL language is
not general purpose language therefore its capabilities are limited when it comes
to interaction with other systems.

Firebird stored procedures can be classified as follow:

• Procedures that do not return any results. These are stored procedures that do
not contain the RETURNS keyword in their header.

• Procedures that return only a single row of results. These are stored procedures
that contain the RETURNS keyword in their header, but do not contain the
SUSPEND keyword in their procedure body. These procedures can be viewed
as a functions that return multiple values. These procedures are executed by
using the EXECUTE PROCEDURE statement.

• Procedures that return result sets, also called “selectable stored procedures”.
These are stored procedures that contain the RETURNS keyword in their
header and the SUSPEND keyword in their procedure body, usually within a

Chapter 4. Executing statements 44

loop. Selectable procedures are executed using the "SELECT * FROM
myProcedure(...)" SQL statement. It is also allowed to use EXECUTE
PROCEDURE statement, however this call might produce strange results, since
for selectable procedures is is equivalent to executing a SELECT statement, but
doing only one fetch after the select. If procedure implementation relies on the
fact that all rows that it returns must be fetched, the logic will be broken.

Consider the following stored procedure that returns factorial of the specified
number.

CREATE PROCEDURE factorial(
 max_value INTEGER
) RETURNS (
 factorial INTEGER
) AS

 DECLARE VARIABLE temp INTEGER;
 DECLARE VARIABLE counter INTEGER;

BEGIN

 counter = 0;
 temp = 1;

 WHILE (counter <= max_value) DO BEGIN

 IF (counter = 0) THEN
 temp = 1;
 ELSE
 temp = temp * row_num;

 counter = counter + 1;

 END
END

Illustration 4.7.: Source code for the procedure that multiplies two integers.

This procedure can be executed using the EXECUTE PROCEDURE call. When it
is done in isql, the output looks as follow

SQL> EXECUTE PROCEDURE factorial(5);

 FACTORIAL
============
 120

Illustration 4.8.: Output of the EXECUTE PROCEDURE call in isql.

Now let's modify this procedure to return each intermediate result to the client.

Chapter 4. Executing statements 45

CREATE PROCEDURE factorial(
 max_value INTEGER
) RETURNS (
 row_num INTEGER,
 factorial INTEGER
) AS

 DECLARE VARIABLE temp INTEGER;
 DECLARE VARIABLE counter INTEGER;

BEGIN

 counter = 0;
 temp = 1;

 WHILE (counter <= max_value) DO BEGIN

 IF (row_num = 0) THEN
 temp = 1;
 ELSE
 temp = temp * row_num;

 factorial = temp;
 row_num = counter;

 counter = counter + 1;

 SUSPEND;

 END
END

Illustration 4.9.: Modified procedure that returns each intermediate result.

If you create this procedure using the isql command line tool and then issue the
"SELECT * FROM test_selectable(5)" statement, the output will be like this:

SQL> SELECT * FROM factorial(5);

 ROW_NUM FACTORIAL
============ ============
 0 1
 1 1
 2 2
 3 6
 4 24
 5 120

Illustration 4.10.: Output of the modified procedure.

Using the CallableStatement

Let's see how the procedures defined above can be accessed from Java.

First, we can execute this procedure showed on Illustration 4.7 using the
EXECUTE PROCEDURE statement and PreparedStatement, however this
approach requires some more code for result set handling.

Chapter 4. Executing statements 46

PreparedStatement stmt = connection.prepareStatement(
 "EXECUTE PROCEDURE factorial(?)");

stmt.setInt(1, 2);

ResultSet rs = stmt.executeQuery();
rs.next(); // move cursor to the first row

int result = rs.getInt(1);

Illustration 4.11.: Example of using the PreparedStatement to call executable procedure.

However, standard was of calling stored procedures in JDBC is to use the
CallableStatement. Note that the call should be specified using the escaped
syntax, but native Firebird EXECUTE PROCEDURE syntax is also supported.

CallableStatement stmt = connection.prepareCall(
 "{call factorial(?,?)}");

stmt.setInt(1, 2);
stmt.registerOutParameter(2, Types.INTEGER);

stmt.execute();

int result = stmt.getInt(2);

Illustration 4.12.: Accessing the executable procedure via CallableStatement.

Please note the difference in the number of parameters used in the examples. The
first example contained only IN parameter on position 1 and the OUT parameter
was returned in the ResultSet on the first position, so it was accessed via index
1.

The latter example additionally contains the OUT parameter in the call. We have
used the CallableStatement.registerOutParameter method to tell the driver
that the second parameter in our call is an OUT parameter of type INTEGER.
Parameters that were not marked as OUT are considered by Jaybird as IN
parameters. Finally the "EXECUTE PROCEDURE factorial(?)" SQL statement is
prepared and executed. After executing the procedure call we get the result from
the appropriate getter method.

It is worth mentioning that the stored procedure call preparation happens in the
CallableStatement.execute method, and not in the prepareCall method of
the Connection object. Reason for this potential deviation from the specification
is that Firebird does not allow to prepare a procedure without specifying
parameters and set them only after the statement is prepared. It seems that this
part of the JDBC specification is modeled after the Oracle RDBMS and a
workaround for this issue had to be delivered. Another side effect of this issue is,
that it is allowed to intermix input and output parameters, for example in the “IN,
OUT, IN, OUT, OUT, IN” order. Not that it makes much sense to do this, but it
might help in some cases when porting applications from another database server.

It is also allowed to use a procedure call parameter both as an input and output
parameter. It is recommended to use this only when porting applications from the
database servers that allow INOUT parameter types, such as Oracle.

The actual stored procedure call using the CallableStatement is equivalent to
the call using the prepared statement as it was showed in the first example. There

Chapter 4. Executing statements 47

is no measurable performance differences when using the callable statement
interface.

Also the JDBC specification allows another syntax for the stored procedure calls:

CallableStatement stmt = connection.prepareCall(
 "{?= call factorial(?}");

stmt.registerOutParameter(1, Types.INTEGER);
stmt.setInt(2, 2);

stmt.execute();

int result = stmt.getInt(1);

Illustration 4.13.: Calling stored procedure using different syntax.

Note, that input parameters have now indices 2 and 3, and not 1 and 2 as in the
previous example. This syntax seems to be more intuitive, as it looks like a
function call. It is also possible to use this syntax for stored procedures that return
more than one parameter by combining code from the second and the last
examples.

Firebird stored procedures can also return result sets. This is achieved by using the
SUSPEND keyword inside the procedure body. This keyword returns the current
values of the output parameters as a single row to the client.

The following example is more complex and shows a stored procedure that
computes a set of factorial of the numbers up to the specified number of rows.

The SELECT SQL statement is the natural way of accessing the selectable
procedures in Firebird. You “select” from such procedures using the Statement
or PreparedStatement objects.

With minor issues it is also possible to access selectable stored procedures
through the CallableStatement interface. The escaped call must include all IN
and OUT parameters. After the call is prepared, parameters are set the same way.
However application must explicitly tell the driver that selectable procedure is
used and access to the result set is desired. This is done by calling a Jaybird-
specific method as showed in the example below. When this is not done,
application has access only to the first row of the result set.

The getter methods from the CallableStatement interface will provide you
access only to the first row of the result set. In order to get access to the complete
result set you have to either call the executeQuery method or the execute
method followed by getResultSet method.

Chapter 4. Executing statements 48

import java.sql.*;
import org.firebirdsql.jdbc.*;

...

CallableStatement stmt = connection.prepareCall(
 "{call factorial(?, ?, ?)}");

FirebirdCallableStatement fbStmt =
 (FirebirdCallableStatement)stmt;

fbStmt.setSelectableProcedure(true);

stmt.setInt(1, 5);
stmt.registerOutParameter(2, Types.INTEGER); // first OUT
stmt.registerOutParameter(3, Types.INTEGER); // second OUT

ResultSet rs = stmt.executeQuery();

while(rs.next()) {
 int firstCol = rs.getInt(1); // first OUT
 int secondCol = rs.getInt(2); // second OUT
 int anotherSecondCol = stmt.getInt(3); // second OUT
}

Illustration 4.14.: Example of using selectable stored procedure via escaped syntax

Note that OUT parameter positions differ when they are accessed through the
ResultSet interface (the firstCol and secondCol variables in our example).
They are numbered in the order of their appearance in the procedure call starting
with 1.

When OUT parameter is accessed through the CallableStatement interface (the
anotherSecondCol parameter in our example), the registered position should be
used. In this case the result set can be used for navigation only.

Describing Output and Input Parameters

The PreparedStatement.getMetaData method is used to obtain description of
the columns that will be returned by the prepared SELECT statement. The method
returns an instance of java.sql.ResultSetMetaData interface that among other
descriptions provides the following:

• column type, name of the type, its scale and precision if relevant;

• column name, its label and the display size;

• name of the table, to which this column belongs;

• information whether the column is read-only or writable, whether it contains
signed numbers, whether it can contains NULL values, etc.

Additionally, the JDBC 3.0 specification defines a new interface
java.sql.ParameterMetaData that provides similar information for the input
parameters of both PreparedStatement and CallableStatement objects.

Note, due to the implementation specifics of the escaped syntax support for
callable statements, it is not allowed to call getParameterMetaData before all
OUT parameters are registered. Otherwise driver will try to prepare a procedure
with an incorrect number of parameters and the database server will generate an
error.

Chapter 4. Executing statements 49

Batch Updates

Batch updates are intended to group multiple update operations to be submitted to
a database server to be processed at once. Firebird does not provide support for
such functionality, but Jaybird emulates it by issuing separate update commands.

Batch Updates with java.sql.Statement interface

The Statement interface defines three methods for batch updates: addBatch,
executeBatch and clearBatch. It is allowed to add arbitrary
INSERT/UPDATE/DELETE or DDL statement to the batch group. Adding a
statement that returns result set is an error.

Statement stmt = connection.createStatement();

stmt.addBatch("UPDATE products " +
 "SET amount = amount – 1 WHERE id = 1");
stmt.addBatch("INSERT INTO orders(id, amount) VALUES(1,
1)");

int[]updateCounts = stmt.executeBatch();

Illustration 4.15.: Example of batch updates using Statement object

The JDBC specification recommends to turn the auto-commit mode off to
guarantee standard behavior for all databases. The specification explicitly states
that behavior in auto-commit case is implementation defined. Jaybird executes a
batch in a single transaction, i.e. the “all-or-nothing” principle. A new transaction
is started before the batch execution and is committed if there were no exception
during batch execution, or is rolled back if at least one batch command generated
an error.

The Statement.executeBatch method submits the job to the database server. In
case of successful execution of the complete batch, it returns an array of integers
containing update counts for each of the commands. Possible values are:

• 0 or positive value – an update count for the corresponding update/DDL
statement.

• Statement.SUCCESS_NO_INFO – driver does not have any information about
the update count, but it knows that statement was executed successfully.

The Statement.executeBatch method closes the current result set if one is open.
After successful execution the batch is cleared. Calling execute, executeUpdate
and executeQuery before the batch is executed does not have any effect on the
currently added batch statements.

If at least one statement from the batch fails, a
java.sql.BatchUpdateException is thrown. Jaybird will stop executing
statements from batch after the first error. In auto-commit mode it will also
rollback the transaction. An application can obtain update counts for the already
executed statements using getUpdateCounts method of the
BatchUpdateException class. The returned array will always contain fewer
entries than there were statements in the batch.

Chapter 4. Executing statements 50

Batch Updates with java.sql.PreparedStatement and java.sql.CallableStatement

Using batch updates with a prepared statement is conceptually similar to the
java.sql.Statement approach. Main difference is that only one statement can be
used.

PreparedStatement stmt = connection.prepareStatement(
 "INSERT INTO products(id, name) VALUES(?, ?)");

stmt.setInt(1, 1);
stmt.setString(2, "apple");
stmt.addBatch();

stmt.setInt(1, 2);
stmt.setString(2, "orange");
stmt.addBatch();

int[] updateCounts = stmt.executeBatch();

Illustration 4.16.: Example of batch updates with PreparedStatement

PreparedStatement stmt = connection.prepareCall(
 "{call add_product(?, ?)");

stmt.setInt(1, 1);
stmt.setString(2, "apple");
stmt.addBatch();

stmt.setInt(1, 2);
stmt.setString(2, "orange");
stmt.addBatch();

int[] updateCounts = stmt.executeBatch();

Illustration 4.17.: Example of batch updates with CallableStatement

Escaped Syntax

Escaped syntax was introduced as a portable JDBC-specific syntax to represent
parts of the SQL language that are usually implemented differently by database
vendors. Also, the escaped syntax is used to define features that might not be
implemented by the database server, but have an appropriate implementation in
the driver.

The JDBC specification defines escaped syntax for the following

• scalar functions

• date and time literals

• outer joins

• calling stored procedures

• escape characters for LIKE clauses

Jaybird implements the escaped syntax support for all cases except the last one
which will be addressed in next releases.

Chapter 4. Executing statements 51

Scalar Functions

Escaped syntax for the scalar function call is defined as

{fn <function-name> (argument list)}

For example {fn concat('Firebird', 'Java')} concatenates these two words
into 'FirebirdJava' literal. “Supported JDBC Scalar Functions” provides a list
of supported scalar functions.

Date and Time Literals

It is allowed to include date and time literals in SQL statements. In order to
guarantee that each database will interpret the literal identically, the JDBC
specification provides following syntax to specify them:

Date literal escaped syntax:

{d 'yyyy-mm-dd'}

Time literal escaped syntax:

{t 'hh:mm:ss'}

Timestamp literal syntax (fractional seconds part '.f...' can be omitted):

{ts 'yyyy-mm-dd hh:mm:ss.f...'}

Outer Joins

Due to the various approaches to specify outer joins (for instance, the Oracle “(+)”
syntax), the JDBC specification provides the following syntax:

{oj <outer join>}

where the outer join is specified as

<outer join> ::=
 <table name> {LEFT|RIGHT|FULL} OUTER JOIN
 {<table name> | <outer join>} ON <search condition>

An example SQL statement would look like this:

SELECT * FROM {oj tableA a
 LEFT OUTER JOIN tableB b ON a.id = b.id}

Stored Procedures

The escaped syntax for stored procedures is described in details in the XXX
where CallableStatetent is covered.

LIKE Escaped Characters

The percent sign (%) and underscore (_) characters are wild cards in LIKE clause
of the SQL statement. In order to interpret them literally they must be preceded by
the backslash character (\) that is called the escape character. The escaped syntax
for this case identifies which character is used as an escape character:

{escape '<escape character>'}

Chapter 4. Executing statements 52

Chapter 5.

5. Working with result sets

When a SELECT statement is executed, the results of the query processing are
returned through the implementation of the java.sql.ResultSet interface.

ResultSet properties

ResultSet Types

JDBC 3.0 specification defines three types of result sets

• TYPE_FORWARD_ONLY – the result set is not scrollable, cursor can move only
forward. When the TRANSACTION_READ_COMMITTED isolation level is used, the
result set will return all rows that are satisfying the search condition at the
moment of the ResultSet.next() call. In other cases result set will return only
rows that were visible at the moment of the transaction start.

• TYPE_SCROLL_INSENSITIVE – the result set is scrollable, the cursor can move
back and forth, can be positioned on the specified row. Only rows satisfying the
condition at the time of query execution are visible.

• TYPE_SCROLL_SENSITIVE, is not supported by Firebird and Jaybird. Driver
allows application to ask for this type of result set, however according to the
JDBC specification, the type is “downgraded” to the previous type and
corresponding warning is added to the connection object.

Due to a missing support of scrollable cursors in Firebird, their support
(TYPE_SCROLL_INSENSITIVE result set type) is implemented by fetching the
complete result set to the client. Scrolling happens in the memory on the
client. This can have adverse effect on the system memory usage and
performance when the result set is large.

ResultSet Concurrency

Result set concurrency specifies whether the result set object can be updated
directly or a separate SQL request should be used to update the row. Result sets
that allow direct modification using the ResultSet.updateXXX methods are
usually used in GUI applications which allow in-place editing of the underlying
result set.

Type of result set concurrency is specified during statement creation and cannot
be changed later. Jaybird supports two types of result set concurrency:

• CONCUR_READ_ONLY is available for all types of result sets. It tells the driver that
direct update of the result set is not possible and all ResultSet.updateXXX
methods should throw an exception.

• CONCUR_UPDATABLE is supported only under certain conditions that are needed
for the driver to correctly construct a DML request that will modify exactly one
row. These conditions are:

• the SELECT statement that generated the result set references only one table;

• all columns that are not referenced by the SELECT statement allow NULL
values, otherwise it won't be possible to insert new rows;

• the SELECT statement does not contain DISTINCT predicate, aggregate
functions, joined tables or stored procedures;

• the SELECT statement references all columns from the table primary key
definition or the RDB$DB_KEY column.

ResultSet Holdability

Result set holdability tells driver whether result sets should be kept open across
commits. ResultSet.HOLD_CURSORS_OVER_COMMIT tells the driver to keep the
result set object open, while ResultSet.CLOSE_CURSORS_AT_COMMIT tells driver
to close them on commit. This property is available only in JDBC 3.0
specification.

When application calls Connection.commit(), the Firebird server closes all open
result sets. It is not possible to tell the server to keep result set open over commit
unless “commit retaining” mode is used. This mode is global for the complete
connection and is not suitable for holdability control on the statement level. Also
this mode is believed to have an undesired side-effect for read-write transactions
as it inhibits garbage collection. Because of these two reasons “commit retaining”
is not used in Jaybird during normal execution. Applications are able to commit
the transaction keeping the result sets open by executing a "COMMIT RETAIN"
SQL statement.

Chapter 5. Working with result sets 54

ResultSet manipulation

ResultSet objects are created when either Statement.executeQuery(String)
or Statement.getResultSet() methods are called. The latter is used in
combination with the Statement.execute(String) method and can be called
only once per result set (see Illustration 5.1 and Illustration 5.2 respectively).

Note, current implementation does not allow to call getResultSet()
method after using the executeQuery(String) method of the Statement
class. The JDBC 3.0 specification is unclear on this topic and JDBC drivers
of different vendors treat it differently.

Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM myTable");

Illustration 5.1.: Using Statement.executeQuery(String) method.

Statement stmt = connection.createStatement();
boolean hasResultSet = stmt.execute("SELECT * FROM
myTable");

if (hasResultSet) {
 ResultSet rs = stmt.getResultSet();
 ...
}

Illustration 5.2.: Using Statement.getResultSet() method.

Accessing the values in the result set

Depending on the type of the result set it is possible to move the cursor either
forward only (Illustration 5.3) or using absolute and relative positioning
(Illustration 5.4).

Values of the result set are obtained by calling the corresponding getter method
depending on the type of column. For example the ResultSet.getInt(1)
method returns the value of the first column as an int value. If value of the
column is not integer, driver tries to convert it according to the “Data Type
Conversion Table” specified in Data Type Conversion Table. If conversion is not
possible, an exception is thrown.

There are two possibilities to obtain data from the result set columns: by column
name or by column position. Position of the first column is 1. Names supplied to
getter methods are case-insensitive. The search first happens in the column
aliases, and if no match found, driver checks the original column names. If there
is more then one column matching the specified name (even if the original names
were quoted), the first match is taken.

When getters for primitive types are used and original value in the result set is
NULL, driver returns a default value for that type. For example getInt() method
will return 0. In order to know whether the value is really 0 or NULL, you have to
call ResultSet.wasNull(...) method.

Chapter 5. Working with result sets 55

Getters that return object values (getString, getDate, getObject, etc.) will
correctly report a null value for the columns containing NULL.

Statement forwardStatement = connection.createStatement();
ResultSet rs = forwardStatement.executeQuery(
 "SELECT id, name, price FROM myTable");

while(rs.next()) {
 int id = rs.getInt(1);
 String name = rs.getString("name");
 double price = rs.getDouble(3);
}

Illustration 5.3.: Example of using forward-only result sets.

Updating records in the result set

Scrollable cursors are especially useful when result of some query is displayed by
the application which also allows the user to directly edit the data and post the
changes to the database.

Statement scrollStatement = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

ResultSet rs = scrollStatement.executeQuery(
 "SELECT id, name, price FROM myTable");

rs.absolute(1); // move to the first row
rs.updateString(2, anotherName); // update the name
rs.updateRow(); // post changes to the db

rs.moveToInsertRow();
rs.updateInt(1, newId);
rs.updateString(2, newName);
rs.updateDouble(3, newPrice);
rs.insertRow();
rs.moveToCurrentRow();

rs.relative(-2);

Illustration 5.4.: Example of using scrollable and updatable result sets.

The code example on Illustration 5.4 shows how to update first row, insert new
one and after that move two records backwards.

Also an application can update the current row using so called “positioned
updates” on named cursors. This technique can be used only with forward-only
cursors, since application can update only the row to which the server-side cursor
points to. In case of scrollable cursors the complete result set is fetched to the
client and then the server-side cursor is closed. The example on Illustration 5.5
shows how to use positioned updates. First of all application has to specify the
name of the cursor and the list of the columns that will be updated before the
query is executed. This name is later used in the UPDATE statement as showed
on the example.

Chapter 5. Working with result sets 56

Statement selectStmt = connection.createStatement();
selectStmt.setCursorName("someCursor");

Statement updateStmt = connection.createStatement();

ResultSet rs = selectStmt.executeQuery(
 "SELECT id, name, price FROM myTable " +
 "FOR UPDATE OF myColumn");

while(rs.next()) {

 ...

 if (someCondition) {
 updateStmt.executeUpdate("UPDATE myTable " +
 "SET myColumn = myColumn + 1 " +
 "WHERE CURRENT OF " + rs.getCursorName());
 }

}

Illustration 5.5.: Example of using the positioned updates.

Closing the result set

A result set is closed by calling the ResultSet.close() method. This releases
the associated server resources and makes the ResultSet object available for
garbage collection. It is strongly recommended to explicitly close result sets in
auto-commit more or ResultSet.TYPE_SCROLL_INSENSITIVE result sets,
because this releases memory used for the cached data.

The result set object is also closed automatically, when the statement that created
it is closed or re-executed. In auto-commit mode, the result set is closed
automatically if any statement is executed over the same connection.

Chapter 5. Working with result sets 57

Chapter 6.

6. Using transactions

Transactions are used to group SQL statements into a single block that satisfies so
called ACID properties: atomicity, consistency, isolation and durability. In other
words, all statements executed within transaction will either succeed and their
results will be permanently stored in the database or the effect of the statement
execution will be undone.

JDBC transactions

Firebird supports multiple concurrent transactions over the same database
connection. This allows applications that work via native Firebird API to save the
number of network connections, which in turn saves the resources on the server2.

This model however cannot be applied to each database engine in the world and
designers of the JDBC API have chosen a model where each database connection
has one and only one active transaction associated with it. Also, unlike the
Firebird model, where transactions require explicit start, JDBC specification
requires the driver to start transaction automatically as soon as transactional
context is needed.

The Illustration 6.1 shows a very simple example of using transactions in JDBC
where a hypothetical intruder that increases salary of each employee twice and
uses explicit transaction control in JDBC. It also tries to hide his own identity and

2 Additionally, before the InterBase was open-sourced, this allowed application developers to
create multi-threaded application without need to purchase additional user licenses.

if the operations succeed, he commits the transaction, otherwise he rolls the
changes back.

 Connection connection = ...

 connection.setAutoCommit(false);

 Statement stmt = connection.createStament();
 try {

 stmt.executeUpdate("UPDATE employee " +
 " SET salary = salary * 2");

 // ... do some more changes to database
 // to hide the identity of the person
 // that messed up the salary information
 // by deleting the audit trails logs, etc.
 stmt.executeUpdate("DELETE FROM audit_trails");

 connection.commit();

 } catch(SQLException ex) {

 connection.rollback();

 }

Illustration 6.1.: Example of explicit transaction control.

In order to do this, application first switches the auto-commit mode off (see below
for more information), then creates a java.sql.Statement object, executes an
UPDATE statement. Please note, that there is no explicit transaction start, new
transaction will be started right before executing the statement (step 2).

If we have database where not only referential integrity is preserved, but also
reasonable security rules are encoded in the triggers, it will raise an error
preventing cleaning the audit trails information. In this case intruder chooses to
undo all the changes he made, so that nobody notices anything. But if no security
rules are implemented, he commits the transaction.

When connection uses explicit transaction control, each transaction must be
finished by calling the commit or rollback methods of the Connection object
before the connection is closed. If a transaction was not finished, but the close
method is called, the active transaction is rolled back automatically. This also
happens when transaction was not finished and connection was not closed
explicitly and that Connection object became eligible for garbage collection. In
this case, the close method is implicitly invoked by the class finalizer, which in
turn rolls the transaction back.

Auto-commit mode

Each newly created connection by default has the auto-commit property set on. In
other words, the duration of the transaction is limited by the duration of statement
execution, or speaking formal language – transaction is ended when the statement
is completed. The point when statement executions is considered complete is
defined in the specification according to the table on Illustration 6.2.

Chapter 6. Using transactions 60

4

3

2

1

• For insert, update, delete and DDL statements, the statement is complete as
soon as it has finished executing.

• For select statements, statement is complete when the associated result set is
closed. The result set is closed as soon as one of the following occurs:

• all of the rows have been retrieved

• the associated Statement object is re-executed

• another Statement object is executed on the same connection

• For CallableStatement objects, the statement is complete, when all of the
associated result sets have been closed.

Illustration 6.2.: Rules when the statement is completed in auto-commit mode

If there is an ongoing transaction and the value of the auto-commit property is
changed, the current transaction is committed.

Note, when a connection is obtained via javax.sql.DataSource object and
container managed transactions are used (for example, the application is executing
inside an EJB container), it is an error to call setAutoCommit method.

Special care should be taken when using multiple statements in auto-commit
mode. The JDBC 2.0 specification did not define the rules for the statement
completion as well as it did not define the behavior of multiple ResultSet objects
created using the same Connection object in auto-commit mode.

Since Firebird does not allow the result set to remain open after the transaction
ends, Jaybird 1.5.x and below cached the complete result set in memory when the
SELECT statements were executed and corresponding transaction was committed.
It had an adverse effect on allocated memory when the result set is big, especially
when it contains BLOB fields. The JDBC 3.0 specification addressed this unclear
situation (see Illustration 6.2) and Jaybird 2.1 was improved to correctly handle
them. It also allowed to improve the memory footprint – the driver no longer
caches non-scrollable and non-holdable result sets in memory.

However, some Java applications that do not conform the current JDBC
specification might no longer work with Jaybird 2.1 and above unless additional
steps are taken.

The piece of code on Illustration 6.3 works perfectly with explicit transaction
control. However, it won't work correctly with a driver that complies with JDBC
3.0 specification, while the selectStmt and updateStmt object were created by
the same connection object (step 1). When the UPDATE is executed in step 3, the
result set produced by the SELECT statement must be closed before the
execution. When Java application tries to fetch the next record by calling the
rs.next() method, it will receive an SQLException with a message “Result set
object is closed”.

The only correct solution to this situation is to fix the application by either using
explicit transaction control, or by using two connection objects, one for SELECT
statement and one for UPDATE statement.

Chapter 6. Using transactions 61

 Statement selectStmt = connection.createStatement();
 Statement updateStmt = connection.createStatement();

 ResultSet rs = selectStmt.executeQuery(
 "SELECT * FROM myTable");

 while(rs.next()) {

 int id = rs.getInt(1);
 String name = rs.getString(2);

 updateStmt.executeUpdate("UPDATE anotherTable SET " +
 " name = '" + name + "', " +
 " WHERE id = " + id);

 }

Illustration 6.3.: Non-compliant usage of nested statements in auto-commit mode.

Unfortunately not all applications can be changed either because there is no
source code available or, simply, because any change in the code requires
complete release testing of the software. The Jaybird 2.1 introduces new
connection parameter defaultHoldable which makes result sets holdable by
default. The holdable result sets will be fully cached in memory, but won't be
closed automatically when transaction ends3. Please note, this property affects also
the cases with explicit transaction control.

Read-only Transactions

A transaction can be declared read-only to reduce the possibility of lock conflicts.
In general, this makes little sense for Firebird, because of its multi-generational
architecture, where readers do not block writers and vice versa. However, in some
cases it can be useful.

It is not allowed to connect with a read-write transaction to a database located on
a read-only media, for example, a CD-ROM. The reason is that, in order to
guarantee consistency of the read-write transactions, Firebird has to increase the
transaction identifier when transaction ends, and to store the new value on the so-
called Transaction Inventory Page even if no changes were made in that
transaction. This requirement can be relaxed if transaction is declared read-only
and the engine ensures that no data can be modified.

Another reason is that long running read-write transactions inhibit the process of
collecting garbage, i.e. a process of identifying previous versions of the database
records that are no longer needed and releasing the occupied space for the new
versions. Without garbage collection the database size will grow very fast and the
speed of the database operations will decrease, because the database engine will
have to check all available record versions to determine the appropriate one.

Therefore, if you are sure that application won't modify the database in the
transaction, use the setReadOnly method of the java.sql.Connection object to
tell the server that the transaction is read-only.

3 Other cases, e.g. closing the statement object or the connection object will still ensure that the
result set object is closed. If you need result sets that can be “detached” from the statement
object that created them, please check the javax.sql.RecordSet implementations.

Chapter 6. Using transactions 62

3

2

1

Transaction Isolation Levels

To address the performance issue, the isolation property is relaxed. The
ANSI/ISO SQL standard defines four such levels, each next one weaker than the
previous. These isolation levels were reflected in the JDBC specification
(Illustration 6.4)

JDBC isolation level Description

TRANSACTION_SERIALIZABLE Transactions with this isolation level prohibit the
phantom reads, the situation when one
transaction reads all rows satisfying the WHERE
condition, another transaction inserts a row
satisfying that condition, and first transaction re-
executes the statement.

TRANSACTION_REPEATABLE_
READ

This isolation level prevents the non-repeatable
reads, a situation when a row is read in one
transaction, then modified in another transaction,
and later re-read in the first transaction. In this
case different values had been read within the
same transaction.

TRANSACTION_READ_COMMIT
TED

Transactions with this isolation level can see only
committed records. However, it does not prevent
so-called non-repeatable reads and phantom
reads.

TRANSACTION_READ_UNCOM
MITTED

The weakest isolation level, or better to say level
with no isolation. Such transactions can see the
not yet committed changes to the data in the
database from the concurrently running
transactions.

Illustration 6.4.: JDBC transaction isolation levels and their characteristics.

Firebird, however, defines other isolation levels: read_committed, concurrency
and consistency. Only the read_committed isolation level can be mapped to the
same level defined by the ANSI/ISO SQL standard. The dirty reads are prevented,
non-repeatable reads as well as phantom reads can occur.

The concurrency isolation level is stronger than repeatable read isolation defined
in ANSI/SQL standard and satisfies the requirements of a serializable isolation
level, however, unlike RDBMSes with locking concurrency control, it guarantees
better performance.

And finally Firebird provides a consistency isolation level which in combination
with table reservation feature guarantees the deadlock-free execution of
transactions. A transaction will be prevented from starting if there is already
another one with the overlapping sets of the reserved tables. This isolation level
guarantees truly serial history of transaction execution.

In order to satisfy the JDBC specification Jaybird provides a following default
mapping of the JDBC transaction isolation levels into Firebird isolation levels:

• TRANSACTION_READ_COMMITTED is mapped to read_committed
isolation level in Firebird – any changes made inside a transaction are not
visible outside a transaction until the transaction is committed. A transaction in

Chapter 6. Using transactions 63

read-committed mode sees all committed changes made by other transactions
even if that happened after start of the current transaction.

• TRANSACTION_REPEATABLE_READ is mapped to concurrency isolation
level in Firebird – any changes made inside this transaction are not visible
outside a transaction until the transaction is committed. A transaction in
repeatable-read sees only those changes that were committed before the
transaction started. Any committed change in another transaction that happened
after the start of this transaction is not visible in this transaction.

• TRANSACTION_SERIALIZABLE is mapped into consistency isolation
level in Firebird – any modification to a table happens in serial way: all
transactions wait until the current modification is done. This mode can be
considered as a traditional pessimistic locking scheme, but the lock is placed on
the whole table. See Chapter “Table Reservation” on page 68 for more
information.

The mapping is specified in the isc_tpb_mapping.properties file that can be found
in the Jaybird archive and can be overridden via the connection properties

• via the tpbMapping property that specifies the path to the
PropertiesResourceBundle with the new mapping of the isolation level;

• via the direct specification of the JDBC transaction isolation level. Illustration
6.5 contains an example of such operation, the values in the mapping are
described in Chapter “Transaction Parameter Buffer” on page 65.

• via the connection pool configuration.

Properties props = new Properties();
props.setProperty("user", "SYSDBA");
props.setProperty("password", "masterkey");
props.setProperty("TRANSACTION_READ_COMMITTED",
 "isc_tpb_read_committed,isc_no_rec_version," +
 "isc_tpb_write,isc_tpb_nowait");

Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:c:/example.fdb",
 props);

Illustration 6.5.: Overriding the default isolation level mapping.

The overridden mapping is used for all transactions started within the database
connection. If the default mapping is overridden via the connection pool
configuration, it will be used for all connections created by the pool.

Savepoints

Savepoints provide finer-grained control over transactions by providing
intermediate steps within a larger transaction. Once a savepoint has been set,
transaction can be rollback to that point without affecting preceding work.

In order to set a savepoint, use following code:

Chapter 6. Using transactions 64

file:///C:/example.fdb

Statement stmt = connection.createStatement();

stmt.executeUpdate(
 "INSERT INTO myTable(id, name) VALUES (1, 'John')");

Savepoint savePoint1 =
 connection.setSavepoint("savepoint_1");

stmt.executeUpdate(
 "UPDATE myTable SET name = 'Ann' WHERE id = 1");

...

connection.rollback(savePoint1);

// at this point changes done by second update are undone

Illustration 6.6.:Example of using savepoints

Note, rolling back to the savepoint automatically releases and invalidates any
savepoints that were created after the released savepoint.

If the savepoint is no longer needed, you can use the
Connection.releaseSavepoint method to release system resources. After
releasing a savepoint it is no longer possible to rollback the current transaction to
that savepoint. Attempt to call the rollback method will result in an
SQLException. Savepoints that have been created within a transaction are
automatically released when transaction is committed or rolled back.

Transaction Parameter Buffer

The behavior of the Firebird transactions is internally controlled by the
Transaction Parameter Buffer (TPB), which specifies different transaction
properties:

• the transaction isolation level;

• the transaction's read-only or read-write mode;

• the lock conflict resolution mode – wait or no wait;

• and, finally, the table reservations – their names and reservation modes.

The TPB is automatically generated depending on the transaction isolation level
specified for the java.sql.Connection object and usually there is no need to
manipulate the TPB directly. Additionally, if the connection is set to read-only
mode, this is reflected in the TPB by appropriate constant. However, the lock
resolution mode as well as table reservations cannot be specified by using the
standard JDBC interfaces. For the cases where this is needed, Jaybird provides an
extension of the JDBC standard.

Chapter 6. Using transactions 65

FirebirdConnection fbConnection =
 (FirebirdConnection)connection;

TransactionParameterBuffer tpb =
 fbConnection.createTransactionParameterBuffer();

tpb.addArgument(TransactionParameterBuffer.READ_COMMITTED);
tpb.addArgument(TransactionParameterBuffer.REC_VERSION);
tpb.addArgument(TransactionParameterBuffer.WRITE);
tpb.addArgument(TransactionParameterBuffer.WAIT);

fbConnection.setTransactionParameters(tpb);

Illustration 6.7.: Example of specifying custom TPB.

The Illustration 6.7 presents an example of populating the TPB with custom
parameters.

Isolation level

As it was already mentioned before, Firebird supports three isolation levels:
read_committed, concurrency and consistency which are represented by the
appropriate constants in the TransactionParameterBuffer class. The isolation
level specifies the way the database engine processes the record versions on read
operations. The concurrency isolation level is also often called SNAPSHOT and
the consistency - SNAPSHOT TABLE STABILITY isolation levels.

In consistency and concurrency modes Firebird database engine loads the
different versions of the same record from disk and checks the “timestamps” of
each version and compares it with the “timestamp” of the current transaction. The
record version with the highest timestamp that is however lower or equal to the
timestamp of the current transaction is returned to the application. This effectively
returns the version of the record that was when the current transaction started and
guarantees that neither non-repeatable reads not phantom reads can ever occur.

In read_committed mode Firebird database engine, however, accesses the record
version with the highest timestamp, for which the corresponding transaction is
marked as committed. This prevents engine from reading the record versions
which were modified in the concurrent transactions that are not yet committed or
were rolled back for whatever reasons. However, such mode allows non-
repeatable reads as well as phantom reads if the concurrent transaction that
modified records or inserted new ones had been committed.

The read_committed isolation mode requires another constant that specifies the
behavior of the transaction when it meets a record version with the timestamp
which belongs to the currently running transaction which is not yet committed.

The most application require the TransactionParameterBuffer.REC_VERSION
mode, which is shown on Illustration 6.7. In this mode database engine fetches the
latest committed version as described before.

The TransactionParameterBuffer.NO_REC_VERSION constant tells database
engine to report the lock conflict when uncommitted record version is met while
fetching data from the database. The outcome of the operation is then controlled
by the lock resolution mode (see page 67).

Chapter 6. Using transactions 66

Read-only transactions

The read-only or read-write transaction mode is controlled by two constants:

• TranscationParameterBuffer.READ and

• TransactionParameterBuffer.WRITE

When the read-write mode is specified, database engine stores the “timestamp” of
new transaction in the database even no modification will be made in the
transaction. The “timestamp” affects the garbage collection process, since the
database engine cannot release records that were modified in the transactions with
higher “timestamps” even when these record versions are no longer needed (in
other words, when there are already newer versions of the records). Thus, the
long-running read-write transaction inhibits the garbage collection even when no
modifications were done in it.

Therefore, it is recommended to set the read-only mode for the transaction when it
is used for read operations.

Lock resolution mode

The RDBMS systems that use pessimistic locking for the concurrency control
lock the records regardless of the operation type, read or write. When application
tries to read a record from the database, database engine tries to obtain a “read
lock” to that record. If the operation succeeds and application later tries to update
the record, the lock is upgraded to the “write lock”. And finally, if the resource is
already locked for write, concurrent transactions cannot lock it for reading, since
the system cannot allow the transaction to make a decision based on data that
might be rolled back later. This in approach significantly decreases concurrency.
However, the databases systems that employ the record versioning mechanism do
not have such restriction because each transaction “sees” its own version of the
record – the only possible conflict happens when two concurrent transactions try
to obtain “write lock” for the same database record.

Firebird belongs to the latter, and on read_committed and concurrency isolation
levels it behaves appropriately – there are no lock conflicts between readers and
writers, and only writers competing for the same resource raise a lock conflict.
However, on the consistency isolation level Firebird emulates the behavior of
the systems with pessimistic locking – read operation will conflict with write.
Even more, the locks are obtained for the whole tables (see “Table Reservation”
chapter for details).

The Illustration 6.8 summarizes the above said in a table for Firebird 2.0. It shows
that read-committed or repeatable read transactions conflict only when they
simultaneously update the same rows. In contrast, a consistency transaction
conflicts with any transaction running in read-write mode, e.g. as soon as a
consistency transaction gets write access to a table, other read-write transactions
are not allowed to make changes in that tables.

Chapter 6. Using transactions 67

Read-committed

Concurrency

Consistency

read-write read-only read-write read-only

Read-committed

Concurrency

read-write some
updates

may conflict

- conflict conflict

read-only - - - -

Consistency
read-write conflict - conflict conflict

read-only conflict - conflict -

Illustration 6.8.: Lock conflicts within one table depending on the isolation level.

Table Reservation

Table reservation allows to specify the database tables and the corresponding
access modes at the beginning of the transaction. When transaction is started,
engine tries to obtain the requested locks for the specified tables and proceeds
only when all of them were successfully obtained. Such behavior allows to create
a deadlock-free execution histories4.

The table reservation is specified via TPB and includes the table to lock, the lock
mode (read or write) and lock type (shared, protected and exclusive).

 Connection connection = ...

 TransactionParameterBuffer tpb =
 connection.createTransactionParameterBuffer();

 tpb.addArgument(TransactionParameterBuffer.CONSISTENCY);
 tpb.addArgument(TransactionParameterBuffer.WRITE);
 tpb.addArgument(TransactionParameterBuffer.NOWAIT);

 tpb.addArgument(TransactionParameterBuffer.LOCK_WRITE,
 "TEST_LOCK");
 tpb.addArgument(TransactionParameterBuffer.PROTECTED);

 connection.setTransactionParameters(tpb);

 // next transaction will lock TEST_LOCK table for writing
 // in protected mode

Illustration 6.9.: Example of using table reservation facility in Firebird.

The Illustration 6.8 shows an example of reserving the TEST_LOCK table for
writing in a protected mode. The code does the following:

1. Create a new instance of TransactionParameterBuffer class.

2. Populate the TPB. The first three statements were described in the chapter
“Transaction Parameter Buffer”. The fourth call specifies that the

4 This approach follows the two-phase locking protocol, where all locks are acquired on the
beginning of the transaction and are released only when transaction is finished.

Chapter 6. Using transactions 68

3

2

1

application wants to obtain a lock on the table TEST_LOCK for writing. The
fifth call specifies the type of the lock to obtain, in our case the protected
lock.

3. Set the new TPB to be used for the next transaction.

The lock mode to the table specified in the TPB can be either

● TransactionParameterBuffer.LOCK_READ for read-only access to the
table;

● or TransactionParameterBuffer.LOCK_WRITE for read-write access to
the table.

The lock type can be either

● TransactionParameterBuffer.SHARED for shared access to the table;

● or, TransactionParameterBuffer.PROTECTED for protected access to the
table;

The TransactionParameterBuffer.EXCLUSIVE mode was introduced in latter
versions of Firebird, however it behaves like PROTECTED mode for all read-write
transactions.

The lock conflict table depends on the isolation level of the transactions and has
the following properties:

● LOCK_WRITE mode always conflicts with another LOCK_WRITE mode
regardless of the lock type and transaction isolation mode;

● LOCK_WRITE always conflicts with another LOCK_READ mode if both
transactions have consistency isolation, but has no conflict with shared-
read locks it if another transaction has either concurrency or
read_committed isolation level;

● LOCK_READ mode never conflicts with LOCK_READ mode.

Chapter 6. Using transactions 69

Chapter 7.

7. Working with Services

Additionally to the normal database connections Firebird features the server-wide
connections. These are used to perform various administrative tasks in Firebird,
e.g. database backup, maintenance, statistics. The set of API calls to perform such
tasks are known under the name “Services API”. Additionally client application
can use the Services API to get some limited information about the server
environment and configuration.

The actual execution of the Services API calls can be viewed as a tasks triggered
from the client application to be executed on server. The parameters passed in the
calls are internally used to construct the string similar to the one that is passed to
command-line tools. Later this string is passed into entry routine of the gbak, gfix,
gsec or gstat utility. The output of the utility, which in normal case is printed to
standard out, is in this case transmitted over the network to the client application.

Jaybird JCA/JDBC driver hides the complexity of the original API providing a set
of interfaces and their implementations to perform the administrative tasks
regardless of the usage mode (i.e. remote server and embedded engine, wire
protocol and access via native client library).

This chapter describes the available Java API for the administrative tasks. All
classes and interfaces described below are defined in the
org.firebirdsql.management package. Each management class works as a
standalone object and does not require an open connection to the server.

ServiceManager

The ServiceManager interface and the FBServiceManager class are defined as
the common superclasses providing setters and getters for common properties as
well as some common routines. The following properties can be specified:

Name Type Description

host java.lang.String Name or the IP address of the host to which we
make the Service API request. Required.

port int Port to which we make the request, 3050 by default.

database java.lang.String Path to the database. The meaning of the property
depends on the service being invoked and will be
described in each of chapters below.

user java.lang.String Name of the user on behalf of which which all
Service API calls will be executed. Required.

password java.lang.String Password corresponding to the specified user.
Required.

logger java.io.OutputStream Stream into which the output of the remote service
will be written to. Optional.

The last parameter requires some more information. The calls to all Services API
routines are asynchronous. The client application can start the call, but there are
no other means to find out whether execution of the service call is finished or not
except reading the output of the service call – EOF in this case means that
execution is finished.

The FBServiceManager converts the asynchronous calls into synchronous by
constantly polling the service output stream. If logger property is specified the
received data are copied into the specified OutputStream, otherwise it is simply
ignored and the EOF-marker is being watched.

This behavior can be changed by overriding the appropriate method in the
FBServiceManager class and/or subclasses. The only requirement is to detach
from the service manager when it is no longer needed.

Backup and restore

The backup and restore routines are defined in the BackupManager interface and
are implemented in the FBBackupManager class. Additionally to the setters and
getters described in the previous section the following methods are used to specify
the backup and restore paths and properties:

Name Type Description

database String For backup operation it specifies the path to the
database to backup.

For restore operation it specifies the path to the
database into which the backup file will be restored.
In case when multi-file database should be created,
use addRestorePath(String, int) method
instead.

Chapter 7. Working with Services 72

backupPath String Path to the backup file. For backup operation
specifies the path and the file name of the newly
created backup file. If multi-file backup files are to
be created, use addBackupPath(String, int)
method instead. For restore operations specifies
path to the single backup file. If database should be
restored from multi-file backup, please use the
addBackupPath(String) method instead.

restorePageBufferCount int Number of pages that will be cached of this
particular database. Should be used only for restore
operation.

restorePageSize int Size of the database page. Should be used only for
restore operation. Valid values depend on the
Firebird version, but should be one of the 1024,
2048, 4096 or 8192.

restoreReadOnly boolean Set to true if the database should be restored in
read-only mode.

restoreReplace boolean Set to true if restore should replace the existing
database with the one from backup.

Warning! It is easy to drop the only existing
database if the backup can't be restored, as the
existing database is first deleted and only after that
the restore process starts. To avoid such situation it
is recommended to restore database into some
dummy file first and then use file system commands
to replace the existing database with the newly
created one.

verbose boolean Be verbose when writing to the log. The service
called on the server will produce lots of output that
will be written to the output stream specified in
logger property.

Additionally to the properties following methods are used to configure the paths
to backup and database files when multi-file backup or restore operations are
used.

Method Description

addBackupPath(String) Add a path to a backup file from a multi-file backup.
Should be used for restore operation only.

addBackupPath(String, int) Add a path to the multi-file backup. The second
parameter specifies the ,maximum size of the
particular file in bytes. Should be used for backup
operation only.

addRestorePath(String, int) Add a path for the multi-file database. The second
parameter specifies the maximum size of the
database file in pages (in other words, the
maximum size in bytes can be obtained by
multiplying this value by restorePageSize
parameter)

clearBackupPaths() Clear all the specified backup paths. This method
also clears the path specified in backupPath
property.

Chapter 7. Working with Services 73

Method Description

clearRestorePaths() Clear all the specified restore paths. This method
also clears the path specified in the database
property.

Please note, all paths that are specified are paths specifications on the
remote server. This has following implications: a) it is not possible to
backup to the local or network drive unless it is mounted on the remote
server; b) it is not possible to restore from the local or network drive unless
it is mounted on the remote server.

After specifying all the needed properties application developer can use
backupDatabase(), backupMetadata() and restoreDatabase() methods to
perform the backup and restore tasks. These methods will block until the
operation is finished. If the logger property was set, the output of the service will
be written into the specified output stream, otherwise it will be ignored5.

// backup the database

BackupManager backupManager = new FBBackupManager();

backupManager.setHost("localhost");
backupManager.setPort(3050);
backupManager.setUser("SYSDBA");
backupManager.setPassword("masterkey");
backupManager.setLogger(System.out);
backupManager.setVerbose(true);

backupManager.setDatabase("C:/database/employee.fdb");
backupManager.setBackupPath("C:/database/employee.fbk");

backupManager.backupDatabase();

...

// and restore it back

BackupManager restoreManager = new FBBackupManager();

restoreManager.setHost("localhost");
restoreManager.setPort(3050);
restoreManager.setUser("SYSDBA");
restoreManager.setPassword("masterkey");
restoreManager.setLogger(System.out);
restoreManager.setVerbose(true);

restoreManager.setRestoreReplace(true); // attention!!!

restoreManager.setDatabase("C:/database/employee.fdb");
restoreManager.setBackupPath("C:/database/employee.fbk");

backupManager.restoreDatabase();

Illustration 7.1.: Example of backup and restore process.

The methods backupDatabase(int) and restoreDatabase(int) provide a
possibility to specify additional backup and restore options that cannot be

5 The output of the service is always transferred over the network regardless whether the logger
property is set or not. Additionally to providing a possibility to the user to track the service
progress it acts also as a signal of operation completion – in this case the Java code will receive
an EOF marker.

Chapter 7. Working with Services 74

specified via the properties of this class. The parameter value is bitwise
combination of the following constants:

Constant Description

BACKUP_CONVERT Backup external files as tables.

By default external tables are not backed up, only
references to the external files with data are stored
in the backup file. When this option is used, the
backup will store the external table as if they were
regular tables. After restore the tables will remain
regular tables.

BACKUP_EXPAND No data compression.

The gbak utility uses RLE compression for the
strings in backup file. Using this option tells it to
write strings in their full length, possibly fully
consisting of empty characters, etc.

BACKUP_IGNORE_CHECKSUMS Ignore checksums.

The backup utility can't backup a database with
page checksum errors. Such database is
considered corrupted and the completeness and
correctness of the backup cannot be guaranteed.
However in some cases such errors can be ignored,
e.g. when the index page is corrupted. In such case
the data in the database are ok and the error
disappears when the database is restored and
index is recreated.

Use this option only when checksum errors are
detected and can't be corrected without full
backup/restore cycle. Ensure that the restored
database contains correct data afterwards.

BACKUP_IGNORE_LIMBO Ignore in-limbo transactions.

The backup utility can't backup database with in-
limbo transactions. When such situation appears,
backup has to wait until the decision about the
outcome of the in-limbo transaction. After some
timeout exception is thrown and backup is aborted.
This option allows to workaround this situation – the
gbak looks for the most recent committed version of
the record and writes it into backup.

BACKUP_METADATA_ONLY Backup metadata only.

When this option is specified, the backup utility
backups only the metadata information (e.g. table
an/or view structure, stored procedures, etc.), but
no data are backed up. This allows restoring a clean
database from the backup.

BACKUP_NO_GARBAGE_COLLECT Do not collect garbage during backup.

The backup process reads all records in the tables
one by one. When cooperative garbage collection is
enabled6 the transaction that accesses the latest
version of the record is also responsible for marking

6 Cooperative garbage collection can be switched off in Firebird 2.0 SuperServer architecture by
corresponding configuration option. It can't be switched off in ClassicServer architecture and in
previous Firebird versions.

Chapter 7. Working with Services 75

Constant Description

the previous versions as garbage. This process is
time consuming and might be switched off when
creating backup, where the most recent version will
be read.

Later operator can restore the database from the
backup. In database with many backversions of the
records the backup-restore cycle can be faster than
traditional garbage collection.

BACKUP_NON_TRANSPORTABLE Use non-transportable backup format.

By default gbak creates so-called transportable
backup where it does not make difference whether it
is later restored on the platform with big or little
endianess. By using this option a non-transportable
format will be used which allows restoring the
database only on the same architecture.

BACKUP_OLD_DESCRIPTIONS Save old style metadata descriptions.

Actually no real information exist for this option, by
default it is switched off.

RESTORE_DEACTIVATE_INDEX Deactivate indexes during restore.

By default indexes are created at the beginning of
the restore process and they are updated with each
record being restored from the backup file. On a big
tables it is more efficient first to store data in the
database and to update the index afterwards. When
this option is specified, the indexes will be restored
in the inactive state. Application is however required
to activate indexes afterwards, it won't happen
automatically.

RESTORE_NO_SHADOW Do not restore shadow database.

If the shadow database is configured, an absolute
path to the shadow is stored in the backup file. If
such backup file is restored on a different system
where such path does not exist (e.g. moving
database from Windows to Linux or otherwise),
restore process will fail. Using this option allows to
overcome such situation.

RESTORE_NO_VALIDITY Do not restore validity constraints.

This option is usually needed when the validity
constrains (e.g. NOT NULL constraints) were added
after the data were already in the database but the
database contains records that do not satisfy such
constraints7.

When this option is specified, the validity constraints
won't be restored. This allows to recover the data
and perform cleanup tasks. Application and/or
administrators are responsible for restoring the
validity constrains afterwards.

7 All versions of Firebird including 2.0 allow to define validity constraints despite the table(s)
contain data that do not satisfy them. Only the new records will be validated, and it is
responsibility of the database administrator to ensure the validity of existing ones.

Chapter 7. Working with Services 76

Constant Description

RESTORE_ONE_AT_A_TIME Commit after completing restore of each table.

By default all data are restored in one transaction. If
for some reason the complete restore is not
possible, using this option will allow to restore at
least some of the data.

RESTORE_USE_ALL_SPACE Do not reserve 20% on each page for the future
versions, useful for read-only databases.

Example of using these options can be found on Illustration 7.2.

BackupManager restoreManager = new FBBackupManager();

restoreManager.setHost("localhost");
restoreManager.setPort(3050);
restoreManager.setUser("SYSDBA");
restoreManager.setPassword("masterkey");
restoreManager.setLogger(System.out);
restoreManager.setVerbose(true);

restoreManager.setRestoreReplace(true); // attention!!!

restoreManager.setDatabase("C:/database/employee.fdb");
restoreManager.setBackupPath("C:/database/employee.fbk");

// restore database with no indexes,
// validity constraints and shadow database
backupManager.restoreDatabase(

BackupManager.RESTORE_DEACTIVATE_INDEX |
 BackupManager.RESTORE_NO_VALIDITY |
 BackupManager.RESTORE_NO_SHADOW |
 BackupManager.RESTORE_ONE_AT_A_TIME);

Illustration 7.2.: Example of using extended options for restore.

User management

The next service available is the user management. The routines are defined in the
UserManager interface and are implemented in the FBUserManager class.
Additionally, there is an User interface providing getters and setters for properties
of a user account on the server and corresponding implementation in the FBUser8
class. The available properties of the FBUser class are:

Name Type Description

userName String Unique name of the user on the Firebird server.
Required. Maximum length is 31 byte.

password String Corresponding password. Getter return value only if
the password had been set

firstName String First name of the user. Optional.

middleName String Middle name of the user. Optional.

lastName String Last name of the user. Optional.

8 The class implementation is simple bean publishing the properties via getters and setters. You
can replace it with any other implementation of User interface.

Chapter 7. Working with Services 77

Name Type Description

userId int ID of the user on Unix. Optional.

groupId int ID of the group on Unix. Optional.

The management class, FBUserManager has following methods to manipulate the
user accounts on the server:

Method Description

getUsers():Map Method delivers a map containing user names as
keys and instances of FBUser class as values
containing all users that are registered on the
server. The instances of FBUser class do not
contain passwords, the corresponding property is
null.

addUser(User) Register the user account on the server.

updateUser(User) Update the user account on the server.

deleteUser(User) Delete the user account on the server.

The Illustration 7.3 shows an example of using the FBUserManager class.

UserManager userManager = new FBUserManager();

userManager.setHost("localhost");
userManager.setPort(3050);
userManager.setUser("SYSDBA");
userManager.setPassword("masterkey");

User user = new FBUser();
user.setUserName("TESTUSER123");
user.setPassword("test123");
user.setFirstName("John");
user.setMiddleName("W.");
user.setLastName("Doe");

userManager.add(user);

Illustration 7.3.: Example of FBUserManager class usage.

Database maintenance

The database maintenance is something that everybody would prefer to avoid,
and, contrary to the backup/restore and user management procedures, there little
automation that can be done here. Usually the maintenance tasks are performed on
the server by the database administrator, but some routines are needed to perform
the automated database upgrade or perform periodic checks of the database
validity.

This chapter describes the methods declared in the MaintenanceManager
interface and its implementation, the FBMaintenanceManager class.

Database shutdown and restart

One of the most often used maintenance operations is database shutdown and/or
bringing it back online. When the database was shutdown only the user that

Chapter 7. Working with Services 78

initiated the shutdown, either SYSDBA or database owner, can connect to the
database and perform other tasks, e.g. metadata modification or database
validation and repair.

The database shutdown is performed by shutdownDatabase(int, int) method.
The first parameter is the shutdown mode, the second – maximum allowed time
for operation.

There are three shutdown modes:

Shutdown mode Description

SHUTDOWN_ATTACH The shutdown process is initiated and it is
not possible to obtain a new connection to
the database but the currently open
connection are fully functional.

When after the maximum allowed time for
operation there are still open connections
to the database, the shutdown process is
aborted.

SHUTDOWN_TRANSACTIONAL The shutdown process is started and it is
not possible to start new transactions and
open new connections to the database.
The transactions that were running at the
time of shutdown initiation are fully
functional.

When after the maximum allowed time for
operation there are still running
transactions, the shutdown process is
aborted.

If no running transactions are found, the
currently open connections are allowed to
disconnect.

SHUTDOWN_FORCE The shutdown process is started and will
be completed before or when the maximum
allowed time for operation is reached. New
connections and transactions are not
prohibited during the wait.

After that any running transaction won't be
able to commit.

After database was shutdown, the owner of the database or SYSDBA can connect
to it and perform maintenance tasks, e.g. migration to the new data model9,
validation of the database, changing the database file configuration.

To bring system back online use the bringDatabaseOnline() method.

Shadow configuration

Database shadow is an in-sync copy of the database that is usually stored on a
different hard disk, possibly on remote computer10, which can be used as a
primary database if the main database server crashes. Shadows can be defined
using CREATE SHADOW SQL command and are characterized by a mode parameter:

9 Until Firebird 2.0 adding a foreign key constraint required an exclusive access to the database.
10 Currently possible only on Unix platforms by using the NFS shares.

Chapter 7. Working with Services 79

● in the AUTO mode database continues operating even if shadow becomes
unavailable (disk or file system failure, remote node is not accessible, etc.)

● in the MANUAL mode all database operations are halted until the problem
is fixed. Usually it means that DBA has to kill the unavailable shadow and
define a new one.

The MaintenanceManager provides a killUnavailableShadows() method to
kill the unavailable shadows. This is equivalent to the gfix -kill command.

Additionally, if the main database becomes unavailable, DBA can decide to
switch to the shadow database. In this case the shadow must be activated before
use. To activate the shadow use the activateShadowFile() method. Please note,
that in this case the database property of the MaintenanceManager must point to
the shadow file which must be located on the local file system of the server to
which the management class is connected.

Database validation and repair

The Firebird server does its best to keep the database file in a consistent form. In
particular this is achieved by a special algorithm called careful writes which
guarantees that the server writes data on disk in such a manner than despite the
server crash the database file always remains in consistent form. Unfortunately it
is still possible that under certain conditions, e.g. crash of the file system or
hardware failure, the database file might become corrupted. Firebird server can
detect such cases including

● Orphan pages. These are the database pages that were allocated for
subsequent write, but due to a crash were not used. Such pages have to be
marked as unused to return storage space back to the application;

● Corrupted pages. These are the database pages that were caused by the
operating system or hardware failures.

The MaintenanceManager class provides a validateDatabase() method to
perform simple health check of the database, and releasing the orphan pages if
needed. It also reports presence of the checksum errors. The output of the routine
is written to the output stream configured in the logger property.

The validateDatabase(int) method can be used to customize the validation
process:

Validation mode Description

VALIDATE_READ_ONLY Perform read-only validation. In this case
the database file won't be repaired, only
the presence of the database file errors will
be reported.

Can be used for periodical health-check of
the database.

VALIDATE_FULL Do a full check on record and pages
structures, releasing unassigned record
fragments.

VALIDATE_IGNORE_CHECKSUM Ignore checksums during repair operations.

The checksum error means that the

Chapter 7. Working with Services 80

Validation mode Description

database page was overwritten in a
random order and the data stored on it are
corrupted. When this option is specified,
the validation process will succeed even if
checksum errors are present.

In order to repair the corrupted database use the markCorruptRecords() method
which marks the corrupted records as unavailable. This method is equivalent to
gfix -mend command. After this operation database can be backed up and
restored to a different place.

Note, the presence of the checksum errors and subsequent use of
markCorruptedRecords() method will mark all corrupted data as unused
space. You have to perform careful check after backup/restore cycle to
assess the caused damage.

Limbo transactions

The limbo transactions are transactions that were prepared for commit but were
never committed. This can happen when, for example, database was accessed by
JTA-enabled applications from Java11. The in-limbo transactions affect the normal
database operation, since the records that were modified in that transactions are
not available – Firebird does not know whether the new version will be committed
or rolled back and blocks access to them. Also the in-limbo transactions prevent
the garbage collection, since garbage collector does not know whether it can
discard the record versions of the in-limbo transaction.

Jaybird contains needed functionality to allow the JTA-enabled transaction
coordinator to recover the in-limbo transactions and either commit them or
perform a rollback. For the cases when this is not possible MaintenanceManager
provides following methods to perform this in interactive mode:

Method Description

listLimboTransactions() Method lists all IDs of the in-limbo transactions to
the output stream specified in logger property.
Application has to either parse the output to commit
or rollback the transactions in automated mode or it
should present the output to the user and let
him/her make a decision.

commitTransaction(int) Commit the transaction with the specified ID.

rollbackTransaction(int) Rollback the transaction with the specified ID.

Sweeping the database

The in-limbo transactions are not the only kind of transactions that prevent
garbage collection. Another type are transactions are those that were finished by
“rollback” and the changes made in such transactions were not automatically
undone by using internal savepoint mechanism, e.g. when there were a lot of

11 Another reason for limbo transactions are multidatabase transactions which can be initiated via
native Firebird API. However, since Jaybird does not provide methods to initiate them, we do
not consider them in this manual.

Chapter 7. Working with Services 81

changes made in the transaction (e.g. 10,000 records and more). Such transactions
are marked as “rollback” transactions on Transaction Inventory Page and prevent
advancing the so-called Oldest Interesting Transaction (OIT) – ID of the oldest
transaction which created record versions that are relevant to any of the currently
running transactions. On each access to the records, Firebird has to check all the
record versions between the current transaction and the OIT, which leads to
performance degradation on large databases. In order to solve the issue Firebird
periodically starts the database sweeping process, that traverses all database
records, removes the changes made by the rolled back transactions and moves
forward the OIT12.

The sweep process is controlled by a threshold parameter – a difference between
the Next Transaction and OIT, by default it equal to 20,000. While this value is ok
for the average database, DBA might decide to increase or decrease the number to
fit the database usage scenario. Alternatively DBA can trigger the sweep process
manually regardless of the current difference between Next Transaction and OIT.

The MaintenanceManager provides following methods to help with database
sweeping:

Method Description

setSweepThreshold(int) Set the threshold between Next Transaction and
OIT that will trigger the automatic sweep process.
Default value is 20,000.

sweepDatabase() Perform the sweep regardless of the current
difference between Next Transaction and OIT.

Other database properties

There are few other properties of the database that can be set via
MaintenanceManager:

Method Description

setDatabaseAccessMode(int) Change the access mode of the database. Possible
values are:

● ACCESS_MODE_READ_ONLY to make
database read-only;

● ACCESS_MODE_READ_WRITE to allow
writes into the database.

Please note, only read-only databases can be
placed on read-only media, the read-write
databases even if accessed within read-only
transactions.

setDatabaseDialect(int) Change the database SQL dialect. The allowed
values can be either 1 or 3.

setDefaultCacheBuffer(int) Change the number of database pages to cache.
Default value is 2048.

setForcedWrites(boolean) Change the forced writes setting for the database.

12 For more information please read article by Ann Harrison “Firebird for the Database Expert:
Episode 4 - OAT, OIT, & Sweep”, available, for example, at
http://www.ibphoenix.com/main.nfs?page=ibp_expert4

Chapter 7. Working with Services 82

http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_expert4

Method Description

When the forced writes are switched off, database
engine does not enforce flushing pending changes
to disk and they are kept in OS cache. When later
the RDBMS changes the same page later, the write
happens in memory, which in many cases increases
the performance. However, in case of OS or
hardware crash the database will be corrupted.

setPageFill(int) Set the page fill factor. Firebird leaves 20% of free
space on each database page for the future record
versions. It is possible to tell Firebird not to reserve
the space, makes sense for read-only databases,
since more data fit the page, which increases the
performance. Possible values are:

● PAGE_FILL_FULL – do not reserve
additional space for future versions;

● PAGE_FILL_RESERVE – reserve the free
space for future record versions.

Database statistics

The last but not least are the StatisticsManager interface and corresponding
implementation in the FBStatisticsManager class, which allow to obtain the
statistical information for the database, like page size, values of OIT and Next
transactions, database dialect, database page allocation and its distribution.

The following methods provide the functionality equivalent to the gstat
command line tool, the output of the commands is written to the output stream
specified in the logger property. It is the responsibility of the application to
correctly parse the text output if needed.

Method Description

getDatabaseStatistics() Get complete statistics about the database.

getDatabaseStatistics(int) Get the statistical information for the specified
options. Possible values are (bit mask, can be
combined together):

● DATA_TABLE_STATISTICS

● SYSTEM_TABLE_STATISTICS

● INDEX_STATISTICS

● RECORD_VERSION_STATISTICS

getHeaderPage() Get information from the header page (e.g. page
size, OIT, OAT and Next transaction values, etc.)

getTableStatistics(String[]) Get statistic information for the specified tables.
This method allows to limit the reported statistical
information to a single or couple of the tables, not
for the whole database.

Chapter 7. Working with Services 83

Chapter 8.

8. Working with Events

Until recently Firebird (InterBase) was, probably, the only RDBMS that provided
asynchronous notification of the connected application about some system events.
Where applications using other RDBMSs were required to reread the database
tables to check for the changes, those using Firebird were able to avoid it – the
triggers in the database could post an event in case of change. And even more, the
event can be so specific that application would need to reread very limited set of
records, possibly only one. This chapter describes the event mechanism in
Firebird and the common usage scenarios.

Database events

The event is a message generated in a trigger or stored procedure that is delivered
to subscribed application. The event is characterized only by name which is
assigned when event is posted, therefore two different events must have two
different names. The applications that subscribe for events are required to specify
the event names in which they are interested, no wildcards are allowed; and
applications either provide a callback function that will be invoked in case of
event or are required to poll for the posted events periodically.

The events are delivered to the application only if the transaction that generated
the event was committed. Also Firebird does not provide any guarantees about the
time of event delivery – it depends on the load of the RDBMS, application load,
network delays between application and RDBMS. The database engine will
continue operating even if no application subscribe to events or when the
subscribed application crashed in the meantime.

It can also happen that multiple transactions will be committed before the events
are delivered to the client system. But even in such case the callback function will
be invoked only once, and only the event name and the count of the events will be
passed as parameters. Same applies to periodical polling – application will receive
event name and count of the events since last polling.

Internally Firebird can be thought to store the subscription information in a table
where columns contain event names, rows correspond to the subscribed
applications and the cells contain the count of the particular event for a particular
application. When event is posted in trigger or stored procedure, Firebird check
the subscription information and increases the event count for the subscribed
applications. Another thread checks the table periodically and notifies the
application about all new events relevant to the particular application. Such
mechanism allows Firebird to keep the event notification table very small13 and to
reduce the number of messages sent to the application.

Note, it is not possible to pass any parameters with the event, e.g. an ID of
the modified records. It is also not possible to encode such information in
the event names – the wildcards are not supported. For such cases
applications should maintain a change tracking table where the IDs of the
modified records are stored and the event mechanism is used to tell the
application that new records were added to the table.

Posting the events

The events are posted from the trigger or stored procedure language using the
POST_EVENT command. It is possible to create a stored procedure with a sole
purpose of posting events (Illustration 8.1).

CREATE PROCEDURE sp_post_event(event_name VARCHAR(72))
AS BEGIN
 POST_EVENT :event_name;
END

Illustration 8.1.: Example of posting events from PSQL code

Firebird 2.0 features new command EXECUTE BLOCK which allows to execute
PSQL statements within the DSQL code (Illustration 8.2).

Statement stmt = connection.createStatement();

try {
 stmt.execute(
 "EXECUTE BLOCK AS BEGIN POST_EVENT 'some_evt'; END");
} finally {
 stmt.close();
}

Illustration 8.2.: Using EXECUTE BLOCK to post events.

13 For example, the effective size for 100 applications subscribed for 100 different events is about
40k in memory.

Chapter 8. Working with Events 86

Subscribing for events

The design of the classes and interfaces in the org.firebirdsql.event package
is similar to the Services API support – there is central manager-class that
establishes a database connection and provides service methods to work with the
events, a callback interface that applications must implement to use the
asynchronous event notification and an interface representing a database event
with two properties – event name and occurrence count.

Applications have to configure following properties before starting using the
implementation EventManager interface:

Name Type Description

host java.lang.String Name or the IP address of the host to which we
subscribe for events. Required.

port int Port to which we connect to, 3050 by default.

database java.lang.String Path to the database. The path is specified for the
remote host but must be absolute. Required.

user java.lang.String Name of the user on behalf of which we connect to
the database. Required.

password java.lang.String Password corresponding to the specified user.
Required.

After configuring these properties application has to invoke the connect()
method to establish a physical connection to the database. At this point the
EventManager is ready to receive the event notifications.

Now the application developer has two choices: use asynchronous event
notification or use the methods that will block until event is delivered or timeout
occurs.

Asynchronous event notification

The asynchronous event notification uses a separate daemon thread to wait for the
event notifications and to deliver the events to the registered listeners. The
listeners are added using the addEventListener(String, EventListener)
method, where the first parameter contains the name of the event to which
application registers to and the second parameter – an instance of EventListener
interface that will be notified about the events. It is allowed to use the same
instance of EventListener interface to listen on different events. The Illustration
8.3 show an example of using the asynchronous event notification.

Chapter 8. Working with Events 87

EventManager eventManager = new FBEventManager();

eventManager.setHost("localhost");
eventManager.setUser("SYSDBA");
eventManager.setPassword("masterkey");

eventManager.setDatabase("c:/database/employee.fdb");

eventManager.connect();

eventManager.addEventListener("test_event",
 new EventListener() {

 public void eventOccurred(DatabaseEvent event){

 System.out.println("Event [" +
 event.getEventName() + "] occured " +
 event.getEventCount() + " time(s)");

 }
 }
);

Illustration 8.3.: Example of registering an event listener for asynchronous event notification.

Using blocking methods

Alternatively application can use the synchronous methods, one that blocks until
the named event is received – the waitForEvent(String) method, or the one
will block until the named event is received or timeout specified in the second
parameter occurs – the waitForEvent(String, int) method. The Illustration
8.4 shows an example of using the blocking methods.

EventManager eventManager = new FBEventManager();

eventManager.setHost("localhost");
eventManager.setUser("SYSDBA");
eventManager.setPassword("masterkey");

eventManager.setDatabase("c:/database/employee.fdb");

eventManager.connect();

int eventCount =
 eventManager.waitForEvent("test_event", 10 * 1000);

System.out.println(
 "Received " + eventCount + " event(s) during 10 sec.");

Illustration 8.4.: Example of blocking waiting for event with a specified timeout.

Chapter 8. Working with Events 88

Appendix A. Extended connection properties

Jaybird allows using arbitrary Database Parameters Block entries. The current
Firebird API has almost 70 DPB parameters, however only few of them are
interesting for regular users. This chapter provides a list of most useful DPB
parameters and short explanation to each of them.

DPB Parameter
and its Alias(es)

Explanation

isc_dpb_user_name

user_name, user
Name of the user for the connection.

isc_dpb_password

password
Password corresponding to the specified user.

isc_dpb_lc_ctype

lc_ctype, encoding
Character encoding for the connection. This
property tells the database server the encoding
in which it expects character content. For list of
the available encodings see “Available
Encodings”.

CharSet, localEncoding Character set for the connection. Similar to the
previous property, however instead of Firebird-
specific name allows using standard Java
encoding name.

DPB Parameter
and its Alias(es)

Explanation

isc_dpb_num_buffers

num_buffers
Number of database pages that will be cached.
Default values are 75 for ClassicServer and
2048 for SuperServer.

isc_dpb_sql_role_name

sql_role_name
Name of the SQL role for the specified
connection.

isc_dpb_sql_dialect

sql_dialect
SQL dialect, by default 3, can be 1 and 2.

isc_dpb_set_db_readonly

set_db_readonly
Set the database into read-only state.

isc_dpb_set_db_sql_dialect

set_db_sql_dialect
Set the SQL dialect of the database.

isc_dpb_set_db_charset

set_db_charset
Set the default character set of the database.

isc_dpb_socket_buffer_size

socket_buffer_size
Jaybird specific parameter. Tells Jaybird Type 4
driver the size of the socket buffer. Should be
used on the systems where default socket
buffer provided by JVM is not correct

isc_dpb_blob_buffer_size

blob_buffer_size
Jaybird specific parameter. Tells the driver the
size of the buffer that is used to transfer BLOB
content. It is recommended to keep the value
equal to n* <database page size> (and
preferably also socket buffer size).

isc_dpb_use_stream_blobs

use_stream_blobs
Jaybird specific parameter. Tells the driver to
create stream BLOBs. By default segmented
BLOBs are created.

isc_dpb_paranoia_mode

paranoia_mode
Jaybird specific parameter. Tells the driver to
throw exception in the situation not covered by
the specification. For example, the JDBC
specification does not say whether it is allowed
to call the close() method twice. In “paranoia
mode” Jaybird will throw an exception while in
normal mode it will simply ignore the second
call.

isc_dpb_use_standard_udf

use_standard_udf

Jaybird specific parameter. Tells the JDBC
driver to assume that standard UDF library is
registered in the database when converting
escaped function calls. See “Supported JDBC
Scalar Functions” for more details.

Extended connection properties 90

Appendix B. Data Type Conversion Table

Mapping between JDBC, Firebird and Java Types

The below table describes a mapping of the JDBC data types defined in
java.sql.Types class to the Firebird data types. Also, for each JDBC data type a
class instance of which is returned by ResultSet.getObject method is provided.

JDBC Type Firebird Type Java Object Type

CHAR CHAR String

VARCHAR VARCHAR String

LONGVARCHAR BLOB SUB_TYPE 1 String

NUMERIC NUMERIC java.math.BigDecimal

DECIMAL DECIMAL java.math.BigDecimal

SMALLINT SMALLINT java.lang.Short

INTEGER INTEGER java.lang.Integer

BIGINT BIGINT java.lang.Long

REAL REAL java.lang.Float

FLOAT FLOAT java.lang.Double

JDBC Type Firebird Type Java Object Type

DOUBLE DOUBLE PRECISION java.langDouble

LONGVARBINARY BLOB SUB_TYPE 0 byte[]

DATE DATE java.sql.Date

TIME TIME java.sql.Time

TIMSTAMP TIMESTAMP java.sql.Timestamp

BLOB BLOB SUB_TYPE < 0 java.sql.Blob

Data Type Conversions

This table specifies the compatible conversions between the Firebird and Java
types.

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I
M
A
L

N
U
M
E
R
I
C

C
H
A
R

V
A
R
C
H
A
R

B
L
O
B

S
U
B
_
T
Y
P
E

1

B
L
O
B

S
U
B
_
T
Y
P
E

0

B
L
O
B

S
U
B
T
Y
P
E

>
0

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

String x x x x x x x x x x x x x x x x

java.math.-
BigDecimal

x x x x x x x x x x

Boolean x x x x x x x x x x

Integer x x x x x x x x x x

Long x x x x x x x x x x

Float x x x x x x x x x x

Double x x x x x x x x x x

byte[] x x x

Blob x x x

Date x x

Time x

Timestamp x x x

Data Type Conversion Table 92

Appendix C. Connection Pool Properties

This chapter contains the list of properties of the ConnectionPoolDataSource,
DataSource and XADataSource interface implementations.

Standard JDBC Properties

This group contains properties defined in the JDBC specification and should be
standard to all connection pools.

Property Description

maxIdleTime Maximum time in milliseconds after which an idle connection in
the pool is closed.

maxPoolSize Maximum number of open physical connections.

minPoolSize Minimum number of open physical connections. If value is
greater than 0, corresponding number of connections will be
opened when first connection is obtained.

maxStatements Maximum size of the prepared statement pool. If zero,
statement pooling is switched off. When the application
requests more statements than can be kept in the pool,
Jaybird will allow creating those statements, however closing
them would not return them back to the pool, but rather
immediately release the resources.

Pool Properties

This group of properties are specific to the Jaybird implementation of the
connection pooling classes.

Property Description

blockingTimeout Maximum time in milliseconds during which application can be
blocked waiting for a connection from the pool. If no free
connection can be obtained, an exception is thrown.

retryInterval Period in which the pool will try to obtain a new connection
while blocking the application.

pooling Allows to switch connection pooling off.

statementPooling Allows to switch statement pooling off.

pingStatement Statement that will be used to “ping” the JDBC connection, in
other words, to check if it is still alive. This statement must
always succeed. The default SQL statement for the Firebird
database is "SELECT CAST(1 AS INTEGER) FROM
rdb$database".

pingInterval Time during which connection is believed to be valid in any
case. The pool “pings” the connection before giving it to the
application only if more than specified amount of time passed
since last “ping”.

isolation Default transaction isolation level. All connections returned
from the pool will have this isolation level. One of:

• TRANSACTION_READ_COMMITTED
• TRANSACTION_REPEATABLE_READ
• TRANSACTION_SERIALIZABLE

transactionIsolat
ionLevel

Integer value from java.sql.Connection interface
corresponding to the transaction isolation level specified in
isolation property.

Runtime Pool Properties

This group contains read-only properties that provide information about the state
of the pool.

Property Description

freeSize Tells how many free connections are in the pool. Value is
between 0 and totalSize.

workingSize Tells how many connections were taken from the pool and are
currently used in the application.

totalSize Total size of open connection. At the pool creation – 0, after
obtaining first connection – between minPoolSize and
maxPoolSize.

Firebird-specific Properties

This group contains properties that specify parameters of the connections that are
obtained from this data source. Commonly used parameters have the

Connection Pool Properties 94

corresponding getter and setter methods, rest of the Database Parameters Block
parameters can be set using setNonStandardProperty setter method.

Property Description

database Path to the database in the format
[host/port:]/path/to/database.fdb

type Type of the driver to use. Possible values are:

• PURE_JAVA or TYPE4 for type 4 JDBC driver
• NATIVE or TYPE2 for type 2 JDBC driver
• EMBEDDED for using embedded version of the Firebird.

• ORACLE for accessing Oracle-mode Firebird.

blobBufferSize Size of the buffer used to transfer BLOB content. Maximum
value is 64k-1.

socketBufferSize Size of the socket buffer. Needed on some Linux machines to
fix performance degradation.

charSet Character set for the connection. Similar to encoding
property, but accepts Java names instead of Firebird ones.

encoding Character encoding for the connection. See Firebird
documentation for more information.

userName Name of the user that will be used by default.

password Corresponding password.

roleName SQL role to use.

tpbMapping TPB mapping for different transaction isolation modes.

Non-standard parameters

Many of the above mentioned Firebird parameters have have a corresponding
DPB entry. However, not every DPB entry has a corresponding getter/setter. This
was done intentionally, Firebird provides almost 70 DPB parameters, but for most
of the applications only few are needed. The remaining parameters are used by
specialized applications (usually server or database management software) for
setting some default values of the database, controlling the cache buffers on the
server, etc. Creating a corresponding getter/setter for each of them simply does
not make sense.

For those Java applications that still need non-standard connectivity parameters,
DataSource and ConnectionPoolDataSource implementations provides a getter
and two setters:

• getNonStandardProperty(String name) method returns a non-standard
property specified by name parameter. If this property was not previously set,
null is returned.

• setNonStandardProperty(String name, String value) method sets the
property specified by the first parameter to a value contained in the second
parameter.

Connection Pool Properties 95

• setNonStandardProperty(String nameValuePair) method provides a
possibility to set a DPB parameter using following syntax:

dataSource.setNonStandardProperty("isc_dpb_sql_dialect=3");

The parameter syntax of the last method is not very common in Java code, it
would be much more natural to use two-parameter setter. However, it has a
specialized use, because there's no possibility to use two-parameter setter method
in configuration files. Usually, when setting a configuration parameter of a data
source, web-containers use the Java reflection API and consider only those setters
that take one parameter. For instance, in the Tomcat server the configuration
parameter would look like this:

 <parameter>
 <name>nonStandardProperty</name>
 <value>sql_dialect=3</value>
 </parameter>

Syntax of the parameter is

<name>[<whitespace>][{=|:|<whitespace>}[<whitespace>]<value>]

where <name> is the name of the DPB parameter, and <value> is its value. The
two are separated by any combination of whitespace and either whitespace or “=”
(equal sign) or “:” (colon) characters. Considering the aliases described in
Extended connection properties For example following values are equivalent:

 isc_dpb_sql_dialect 3

 isc_dpb_sql_dialect : 3

 sql_dialect : 3

 sql_dialect=3

Connection Pool Properties 96

Appendix D. Character Encodings

Character encodings and their correct use with Firebird RDBMS from Java is an
important topic, that initially seems to be complex, but in fact can be formulated
by just a few rules. This appendix provides information on this topic.

Encodings Types

Firebird uses character encodings in two different areas:

● The database encoding defines a character set in which all CHAR,
VARCHAR and BLOB SUB_TYPE 1 fields are physically stored on the
disk. There is default database encoding that is specified during database
creation. It is also possible to specify character sets on per column basis.

● The client connection encoding defines a character set in which client will
send and expects to receive character data. This encoding might or might
not match the database default encoding.

The Firebird RDBMS performs translation between character sets of the client
connection and the character set of the content. The list of allowed character sets
as well as the allowed translations between them are specified in the fbintl
shared library14 located in the intl/ directory of the Firebird installation. There is
also a special character set NONE that tells RDBMS not to interpret the contents
of the character field.

14 On Windows this library is represented by fbintl.dll, on Linux – libfbintl.so.

Firebird uses following algorithm when performing translations:
● If source and target character sets match, send the content unchanged.

● If the target character set is “NONE”, send source content unchanged.

● If the source character set is “NONE”, send source content unchanged.

● If there is a direct translation rule between source and target character sets,
use that rule.

● If there is no direct translation rule, check if there is rule to translate the
source character set into the UTF8 character set and a rule to translate
from UTF8 into the target character set. If yes, use these two rules for
translation.

● If no suitable translation rule can be found, throw an exception.

Encodings in Java

Java programming language is based on the Unicode character set and uses the
UTF-16 encoding, in which each character is represented by one or two 16-bit
units. The Firebird, on the other side, is not based on Unicode and allows different
character sets to be assigned to different database objects. Additionally, Firebird
requires a connection character set to be specified in connection options, which
forces Firebird to convert data from the character set of the database object into
the character set of the client application.

There are two boundary cases that we will consider here, one when Firebird
database was created with default15 character set UTF8, another when Firebird
database was created without specifying the character set (i.e. character set
NONE).

The UTF8 in Firebird 2.0 is a Unicode character set that uses UTF-8 encoding and
occupies from one to four 8-bit units. Firebird supported Unicode character set for
a long time, however its implementation was deficient – it did not support proper
uppercasing and correct sorting. These issues were addressed in the Firebird 2.0
release and at the moment nothing prevents developers from using Unicode in the
database and on the client side, which greatly simplifies the internationalization
and localization of the applications. Jaybird JDBC driver properly supports
Firebird 2.0 since version 2.1.016.

The UTF8 character set

Software developer must ensure two things to enable use of Unicode characters in
the database and the application:

● the database objects must be defined with the UTF8 character set; this can
be done by either creating database with default UTF8 character set or by
adding CHARACTER SET UTF8 clause to the column or domain definitions.

15 The default character set simplifies the explanation, since we do not have to consider the cases
when different columns with different character sets are used within the same connection. The
statements made here, obviously, can be applied to those cases as well.

16 Jaybird provided character set conversion from the very beginning, however Jaybird versions
prior to 2.1.0 know nothing about improved Unicode support in Firebird 2.0 because Jaybird
2.0.0 was released almost a year before Firebird 2.0 was released.

Character Encodings 98

● the encoding connection property in the JDBC driver has to be set to
UTF8; this can be done several ways: the he easiest one is to add the
appropriate parameter to the JDBC URL (Illustration D.1). Another
possibility is to use appropriate method of the DriverManager class
(Illustration D.2). The applications that use DataSource interface to obtain
the database connections also have access to the encoding property17.

Class.forName("org.firebirdsql.jdbc.FBDriver");

Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:employee?encoding=UTF8",
 "SYSDBA", "masterkey");

Illustration D.1.: Specifying the connection encoding in JDBC URL.

Class.forName("org.firebirdsql.jdbc.FBDriver");

Properties props = new Properties();

props.setProperty("user", "SYSDBA");
props.setProperty("password", "masterkey");
props.setProperty("encoding", "UTF8");

Connection connection = DriverManager.getConnection(
 "jdbc:firebirdsql:localhost/3050:employee", props);

Illustration D.2.: Specifying connection encoding in the connection properties.

There are few limitations related to using the UTF8 character set:

● it is not possible to create Unicode columns longer than 8191 Unicode
characters; this limitation is caused by the fact that the longest possible
VARCHAR column can occupy 32765 bytes (32767 for CHAR columns)
and single UTF8 character can occupy maximum four bytes.

● it is not possible to index Unicode columns longer than 1023 characters;
this limitation is caused by the fact that the longest index key cannot be
longer than a quarter of the database page, which in Firebird 2.0 can be
maximum 16k and the before mentioned fact that each UTF8 character can
occupy up to four bytes.

Also it should be mentioned, that using Unicode character set might cause
noticeable performance degradation when database is used over the wide-area
networks. This mainly applies to the cases when Cyrillic characters are stored in
the database, since each character would occupy two bytes of the network packet,
which in turn might cause additional roudtrips to the server to fetch data.

The NONE character set

Java introduces additional complexity when the NONE character set is used. The
reason for this is that Java internally stores all strings in Unicode format, and the
application must define the character encoding for the byte contents to the JVM.
When the NONE character set is used, the driver does not know how to interpret
the received data. The only choice that is left to the driver is to construct a string

17 See http://jaybirdwiki.firebirdsql.org/... for configuration examples of the most popular
application servers.

Character Encodings 99

http://jaybirdwiki.firebirdsql.org/

using the default character set of the JVM, which usually matches the regional
settings of the operating system and can be accessed from within the JVM through
the file.encoding system property.

It is clear that the conversion using default character set that happens inside the
JVM can lead to errors when the same content is accessed from two or more
different Java Virtual Machines that have different configuration. One application
running on the computer with, for example, Russian regional settings saves the
Russian text (the default character set of the JVM is Cp1251) and another
application running on computer with German regional settings (default character
set is Cp1252) will read in such case some special or accented characters.
However, when all client applications run same OS with the same regional
settings in most cases will not have any severe consequences (except probably
wrong sorting order or uppercasing on the server side).

On Linux and other Unix platforms it might have more severe consequences as it
is very common that regional settings are not configured and that the default “C”
locale is used and the non-ASCII characters will be replaced with question marks
(“?”).

Therefore, application should use NONE character encoding as an encoding for a
database and a connection only when at least one of the following is met:

● Database will contain only ASCII characters

● It is guaranteed that all Java Virtual Machines accessing the database will
have the same default encoding that can correctly handle all characters
stored in the database.

As a partial workaround one can specify the encoding that should be used to
interpret bytes coming from the server in the charSet connection property. The
following rules are used when interpreting the encoding and charSet properties:

● When only encoding property specified, driver uses the default mapping
between server and Java encodings. When encoding property is not set or
set to NONE and charSet property is not set, the default JVM encoding is
used to interpret bytes coming from the server.

● When only charSet property is specified, driver uses the reverse mapping
to specify the connection encoding for the server and interprets byte
stream according to the value of the property.

● When both encoding and charSet property are specified, driver sets the
connection encoding according to the value of the encoding property, but
interprets the byte stream according to the charSet property.

The last case is most powerful, but also is the most dangerous in use. When used
properly, it can solve the problems with the legacy databases; when used
incorrectly, one can easily trash the content of the database.

Available Encodings

The below table lists the available character encodings in the default Firebird
distribution and their mapping to the Java ones:

Character Encodings 100

Firebird
encoding

Java encoding
Size in
bytes

Comments

NONE - 1
Raw bytes, no interpretation of the
content is possible.

ASCII ASCII 1 -

BIG_5 Big5 2 Traditional Chinese

DOS437 Cp437 1
MS-DOS: United States, Australia, New
Zealand, South Africa

DOS737 Cp737 1 MS-DOS: Greek

DOS775 Cp775 1 MS-DOS: Baltic

DOS850 Cp850 1 MS-DOS: Latin-1

DOS852 Cp852 1 MS-DOS: Latin-2

DOS857 Cp857 1 IBM: Turkish

DOS858 Cp858 1 IBM: Latin-1 + Euro

DOS860 Cp860 1 MS-DOS: Portuguese

DOS861 Cp861 1 MS-DOS: Icelandic

DOS862 Cp862 1 IBM: Hebrew

DOS863 Cp863 1 MS-DOS: Canadian French

DOS864 Cp864 1 IBM: Arabic

DOS865 Cp865 1 MS-DOS: Nordic

DOS866 Cp866 1 IBM: Cyrillic

DOS869 Cp869 1 IBM: Modern Greek

EUCJ_0208 EUC_JP 2
JIS X 0201, 0208, 0212, EUC
encoding, Japanese

GB_2312 EUC_CN 2
GB2312, EUC encoding, Simplified
Chinese

ISO8859_1 ISO-8859-1 1 ISO 8859-1, Latin alphabet No. 1

ISO8859_2 ISO-8859-2 1 ISO 8859-2

ISO8859_3 ISO-8859-3 1 ISO 8859-3

ISO8859_4 ISO-8859-4 1 ISO 8859-4

ISO8859_5 ISO-8859-5 1 ISO 8859-5

ISO8859_6 ISO-8859-6 1 ISO 8859-6

ISO8859_7 ISO-8859-7 1 ISO 8859-7

ISO8859_8 ISO-8859-8 1 ISO 8859-8

ISO8859_9 ISO-8859-9 1 ISO 8859-9

ISO8859_13 ISO-8859-13 1 ISO 8859-13

KSC_5601 MS949 2 Windows Korean

UNICODE_FSS UTF-8 3
8-bit Unicode Transformation Format.
Deprecated in FB 2.0.

WIN1250 Cp1250 1 Windows Eastern European

WIN1251 Cp1251 1 Windows Cyrillic

WIN1252 Cp1252 1 Windows Latin-1

Character Encodings 101

Firebird
encoding

Java encoding
Size in
bytes

Comments

WIN1253 Cp1253 1 Windows Greek

WIN1254 Cp1254 1 Windows Turkish

WIN1255 Cp1255 1 -

WIN1256 Cp1256 1 -

WIN1257 Cp1257 1 -

UTF8 UTF-8 4
8-bit Unicode Transformation Format.
Recommended since Firebird 2.0.

Character Encodings 102

Appendix E. Supported JDBC Scalar Functions

The JDBC API supports the escaped syntax for numeric, string, time, date, system
and conversion functions. Jaybird will try to provide an equivalent of the JDBC
function using the built-in capabilities of the Firebird database. When no
equivalent is available, Jaybird will pass the function call “as is” to the database
assuming that it contains all necessary UDF declarations .

Not all functions described in the JDBC specification have corresponding built-in
functions in Firebird, but are available in the standard UDF library ib_udf18
shipped with Firebird. Jaybird provides a connection parameter
use_standard_udf telling the driver to assume that functions from that UDF are
available in the database. In this case Jaybird will convert all JDBC function calls
into the corresponding calls of the UDF functions.

Below you will find the list of JDBC functions and whether they have a
corresponding equivalent in the “built-in” and in the “UDF” modes.

18 On Windows platform it is represented by the ib_udf.dll, on Linux it is represented by the
libib_udf.so.

Numeric Functions

JDBC Jaybird

built-in UDF mode

Description

ABS(number) m l Absolute value of number.

ACOS(float) m l Arccosine, in radians, of float.

ASIN(float) m l Arcsine, in radians, of float.

ATAN(float) m l Arctangent, in radians, of float.

ATAN2(float1,
float2)

m l Arctangent, in radians, of float2 /
float1.

CEILING(number) m l Smallest integer >= number.

COS(float) m l Cosine of float radians.

COT(float) m l Cotangent of float radians.

DEGREES(number) m m Degrees in number radians.

EXP(float) m m Exponential function of float.

FLOOR(number) m l Largest integer <= number.

LOG(float) m l Base e logarithm of float.

LOG10(float) m l Base 10 logarithm of float.

MOD(integer1,
integer2)

m l Remainder for integer1 /
integer2.

PI() m l The constant pi.

POWER(number,
power)

m m number raised to (integer) power.

RADIANS(number) m m Radians in number degrees.

RAND(integer) m RAND() 19 Random floating point for seed
integer.

ROUND(number,
places)

m m number rounded to places places.

SIGN(number) m m -1 to indicate number is < 0;

0 to indicate number is = 0;

1 to indicate number is > 0.

SIN(float) m l Sine of float radians.

SQRT(float) m l Square root of float.

TAN(float) m l Square root of float.

TRUNCATE(number, m m number truncated to places

19 Standard UDF library provides RAND() function taking no parameters. The random number
generator is seeded by the current time. There is no function where the seed can be specified.

Supported JDBC Scalar Functions 104

JDBC Jaybird

built-in UDF mode

Description

places) places.

Legend: m – not available in this mode; l – available in this mode.

String Functions

JDBC Jaybird

built-in UDF mode

Description

ASCII(string) m l Integer representing the ASCII code
value of the leftmost character in
string.

CHAR(code) m l Character with ASCII code value
code, where code is between 0 and
255.

CONCAT(strin1
g, string2)

l l Character string formed by
appending string2 to string1; if
a string is null, the result is DBMS-
dependent.

DIFFERENCE(st
ring1,
string2)

m m Integer indicating the difference
between the values returned by the
function SOUNDEX for string1
and string2.

INSERT(string
1, start,
length,
string2)

m m A character string formed by deleting
length characters from string1
beginning at start, and inserting
string2 into string1 at start.

LCASE(string) m l Converts all uppercase characters in
string to lowercase.

LEFT(string,
count)

l l The count leftmost characters from
string.

LENGTH(string
)

m l 20 Number of characters in string,
excluding trailing blanks.

LOCATE(string
1, string2[,

start])

m m Position in string2 of the first
occurrence of string1, searching
from the beginning of string2; if
start is specified, the search begins
from position start. 0 is returned if
string2 does not contain
string1. Position 1 is the first
character in string2.

LTRIM(string) m l Characters of string with leading
blank spaces removed.

Legend: m – not available in this mode; l – available in this mode.

20 The trailing blanks are also counted.

Supported JDBC Scalar Functions 105

String Functions (continued)

JDBC Jaybird

built-in UDF mode

Description

REPEAT(string
, count)

m m A character string formed by
repeating string count times.

REPLACE(strin
g1, string2,
string3)

m m Replaces all occurrences of
string2 in string1 with
string3.

RIGHT(string,
count)

m m The count rightmost characters in
string.

RTRIM(string) m l The characters of string with no
trailing blanks.

SOUNDEX(strin
g)

m m A character string, which is data
source-dependent, representing the
sound of the words in string; this
could be a four-digit SOUNDEX
code, a phonetic representation of
each word, etc.

SPACE(count) m m A character string consisting of
count spaces.

SUBSTRING(str
ing, start,
length)

l l A character string formed by
extracting length characters from
string beginning at start.

UCASE(string) l l Converts all lowercase characters in
string to uppercase.

Legend: m – not available in this mode; l – available in this mode.

Supported JDBC Scalar Functions 106

Time and Date Functions

JDBC Jaybird

built-in UDF mode

Description

CURDATE() l l The current date as a date value.

CURTIME() l l The current local time as a time
value.

DAYNAME(date) m m A character string representing the
day component of date; the name
for the day is specific to the data
source.

DAYOFMONTH(da
te)

l l An integer from 1 to 31 representing
the day of the month in date.

DAYOFWEEK(dat
e)

m m An integer from 1 to 7 representing
the day of the week in date; 1
represents Sunday.

DAYOFYEAR(dat
e)

m m An integer from 1 to 366
representing the day of the year in
date.

HOUR(time) l l An integer from 0 to 23 representing
the hour component of time.

MINUTE(time) l l An integer from 0 to 59 representing
the minute component of time.

MONTH(date) l l An integer from 1 to 12 representing
the month component of date.

MONTHNAME(dat
e)

m m A character string representing the
month component of date; the
name for the month is specific to the
data source.

NOW() l l A timestamp value representing the
current date and time.

QUARTER(date) m m An integer from 1 to 4 representing
the quarter in date; 1 represents
January 1 through March 31.

Legend: m – not available in this mode; l – available in this mode.

Time and Date Functions (continued)

JDBC Jaybird

built-in UDF mode

Description

SECOND(time) l l An integer from 0 to 59 representing
the second component of time.

TIMESTAMPADD(
interval,
count,

m m A timestamp calculated by adding
count number of interval(s) to

Supported JDBC Scalar Functions 107

JDBC Jaybird

built-in UDF mode

Description

timestamp) timestamp.

TIMESTAMPDIFF
(interval,
timestamp1,
timestamp2)

m m An integer representing the number
of interval by which timestamp2
is greater than timestamp1.

WEEK(date) l l An integer from 1 to 53 representing
the week of the year in date.

YEAR(date) l l An integer representing the year
component of date.

Legend: m – not available in this mode; l – available in this mode.

System Functions

JDBC Jaybird

built-in UDF mode

Description

DATABASE() m m Name of the database.

IFNULL(expres
sion, value)

l l value if expression is null;
expression if expression is not
null.

USER() m m User name in the DBMS.

Legend: m – not available in this mode; l – available in this mode.

Conversion Functions

JDBC Jaybird

built-in UDF mode

Description

CONVERT(value
, SQL type)

l l value converted to SQL type
where SQL type may be one of
the following SQL types:

• BIGINT
• CHAR
• DATE
• DECIMAL
• DOUBLE PRECISION
• FLOAT
• INTEGER
• REAL
• SMALLINT
• TIME
• TIMESTAMP
• VARCHAR

Legend: m – not available in this mode; l – available in this mode.

Supported JDBC Scalar Functions 108

	Java Programmer's Manual
	1. Introduction
	Jaybird architecture
	Supported Servers
	Supported Specifications
	Distribution package
	Quality Assurance
	Useful resources

	2. Obtaining a connection
	Obtaining connection java.sql.DriverManager
	Driver types
	Connection Pooling
	The javax.sql.ConnectionPoolDataSource implementation
	Using FBConnectionPoolDataSource with JNDI
	The javax.sql.DataSource implementation
	The javax.sql.XADataSource implementation

	3. Handling exceptions
	Working with exceptions
	Warnings
	java.sql.SQLException in Jaybird
	SQL states
	Useful Firebird error codes

	4. Executing statements
	The java.sql.Statement interface
	Statement behind the scenes
	The java.sql.PreparedStatement interface
	Prepared statement pooling
	The java.sql.CallableStatement interface
	Batch Updates
	Escaped Syntax

	5. Working with result sets
	ResultSet properties
	ResultSet manipulation

	6. Using transactions
	JDBC transactions
	Auto-commit mode
	Read-only Transactions
	Transaction Isolation Levels
	Savepoints
	Transaction Parameter Buffer
	Table Reservation

	7. Working with Services
	ServiceManager
	Backup and restore
	User management
	Database maintenance
	Database statistics

	8. Working with Events
	Database events
	Posting the events
	Subscribing for events

	Appendix A. Extended connection properties
	Appendix B. Data Type Conversion Table
	Appendix C. Connection Pool Properties
	Standard JDBC Properties
	Pool Properties
	Runtime Pool Properties
	Firebird-specific Properties
	Non-standard parameters

	Appendix D. Character Encodings
	Encodings Types
	Encodings in Java
	Available Encodings

	Appendix E. Supported JDBC Scalar Functions
	Numeric Functions
	String Functions
	String Functions (continued)
	Time and Date Functions
	Time and Date Functions (continued)
	System Functions
	Conversion Functions

