
Firebird Database Cache Buffer
Norman Dunbar, Martin Köditz

Version 1.2, 28 May 2020

Table of Contents
1. Introduction. 2

2. The Firebird Cache. 3

3. Using MON$IO_STATS . 4

Appendices . 8

Appendix A: Document history. 9

Appendix B: License notice . 10

Table of Contents

1

Chapter 1. Introduction
Firebird uses a page cache to hold pages in memory. It is much quicker to retrieve pages from RAM
than to go out onto the disc system and read them physically each time they are required. The
following description of how Firebird uses its cache is taken from a posting by Ann Harrison on the
Firebird Support mailing list.

The posting was in response to a query asking if there is a way to reduce the memory cache without
giving up too much performance? This was itself in respect of a system that was taking a long time to
wake up from hibernation and the cause was thought to be the time required to load back all the
cache pages from disc before the first query (after hibernation) could be processed. The cause was
confirmed and the DBA responsible for the database asked, on the list, how he could reduce the
buffer cache as much as possible but still have a responsive system.

Ann has given her permission for this posting to be documented formally as part of the Firebird
documentation project.

Chapter 1. Introduction

2

Chapter 2. The Firebird Cache
Everything in the database is organised as fixed sized pages of known structure - there are nine
different types of pages. The page cache is the intermediate between the "working" parts of the
database and the disk.

When initially started, Firebird reads the database header page, then the first pointer page of a
system table called RDB$PAGES from which it then knows where to find the pointer pages, amongst
other things, for the system and user tables within the database.

As soon as the application accesses the database and begins a transaction, Firebird reads the
pointer pages telling it where to find the data pages for the tables involved in the application’s
transactions. All the pages go into the cache and stay there until the cache is completely full. When
there’s no place to put the next page, Firebird releases the least recently used page - not the first one
read, but the one that has been referenced least recently and has not been modified.

When a transaction commits - and at a few other times - Firebird writes the pages changed by that
transaction to disk, but does not release them from the cache - this helps avoid an extra read if the
page is required again soon.

Over time and with luck, you end up with the most frequently changed and referenced pages
resident in the cache - those would be transaction inventory pages, pointer pages for active tables,
the header page, the top levels of indexes, etc. Data and lower level index pages swap in and out as
required - but the cache will always be full.

You can use the MON$ tables (in Firebird 2.1 onwards, especially MON$IO_STATS) to figure out how
well your cache is being used. They will report on the number of Fetches vs. Reads which is the
number of times pages were accessed versus the number of times they had to be read from disk.
When the number of reads goes up dramatically, you’ve reduced the cache too much.

The MON$ tables will also give you the number of Marks vs. Writes, which tells you the number of
times pages are changed versus the number of times the pages were written to disk. When you see
the disk writes go up, you’ve probably reduced the cache too much.

Chapter 2. The Firebird Cache

3

Chapter 3. Using MON$IO_STATS
As mentioned above, the table MON$IO_STATS can be used to help you determine how well your
buffer cache is performing. The table has the following structure:

MONS$STAT_ID

The statistic id.

MONS$STAT_GROUP

The statistic group. Statistics are gathered for the following groups:

• 0: The database as a whole.

• 1: Attachments.

• 2: Transactions.

• 3: Statements.

• 4: Calls.

MON$PAGE_READS

The number of pages read. These are the pages read from the disc and not from the cache.

MON$PAGE_WRITES

The number of pages written back to disc.

MON$PAGE_FETCHES

The number of pages read from the cache as opposed to from disc.

MON$PAGE_MARKS

The number of pages changed while in the cache. It is possible that not all of these have been
written back to disc.

To inspect the current statistics for the database as a whole, we would use the following query in
isql:

tux> isql employee
Database: employee

SQL> SELECT MON$PAGE_READS, MON$PAGE_WRITES, MON$PAGE_FETCHES, MON$PAGE_MARKS
CON> FROM MON$IO_STATS
CON> WHERE MON$STAT_GROUP = 0;

 MON$PAGE_READS MON$PAGE_WRITES MON$PAGE_FETCHES MON$PAGE_MARKS
=================== =================== =================== ===================
 134 526 13851 529

The results of the above show that:

• 134 pages have had to be physically read from the disc into the cache so far.

Chapter 3. Using MON$IO_STATS

4

• 13,851 pages, on the other hand, have been read directly from the cache.

• 529 pages, in the cache, have been changed in some way.

• 526 changed pages have been copied from the cache to disc.

We can assume, therefore, that although a small number of pages have been read into the cache,
there is nothing we can do to avoid that. When the database is started up the cache is empty, when
applications connect and access the database, various pages must be read and the cache must be
filled, so physical reads will be a necessity. In this example, it appears that once pages are in the
cache they are being accessed quite frequently given that there have been approximately 103 cache
reads for every physical read.

Of the 529 updated pages - and these are system as well as user pages - 526 have been written back
to the physical discs but three still remain in cache, as yet, unwritten.

The results shown above show the performance of the cache over the life of the database so far. We
can narrow this down to our current attachments by modifying the query to select those rows
where the MON$STAT_GROUP is 1.

SQL> SELECT MON$PAGE_READS, MON$PAGE_WRITES, MON$PAGE_FETCHES, MON$PAGE_MARKS
CON> FROM MON$IO_STATS
CON> WHERE MON$STAT_GROUP = 1;

 MON$PAGE_READS MON$PAGE_WRITES MON$PAGE_FETCHES MON$PAGE_MARKS
=================== =================== =================== ===================
 0 4 87 5
 134 520 13619 522

Interpretation of the above statistics is exactly the same as for the database as a whole.

We can further diagnose the statistics by individual transactions, as follows:

SQL> SELECT MON$PAGE_READS, MON$PAGE_WRITES, MON$PAGE_FETCHES, MON$PAGE_MARKS
CON> FROM MON$IO_STATS
CON> WHERE MON$STAT_GROUP = 2;

 MON$PAGE_READS MON$PAGE_WRITES MON$PAGE_FETCHES MON$PAGE_MARKS
=================== =================== =================== ===================
 0 0 60 0
 0 0 1 0
 0 0 1 0
 0 0 69 0
 0 0 93 0
 0 0 85 0
 0 0 1 0
 0 0 1 0

And, by individual statements:

Chapter 3. Using MON$IO_STATS

5

SQL> SELECT MON$PAGE_READS, MON$PAGE_WRITES, MON$PAGE_FETCHES, MON$PAGE_MARKS
CON> FROM MON$IO_STATS
CON> WHERE MON$STAT_GROUP = 3;

 MON$PAGE_READS MON$PAGE_WRITES MON$PAGE_FETCHES MON$PAGE_MARKS
=================== =================== =================== ===================
 0 0 1 0
 0 0 38 0
 0 0 4 0
 0 0 18 0
 0 0 158 0
 0 0 1 0
 0 0 1 0
 0 0 1 0
 0 0 1 0
 0 0 1 0
 0 0 0 0
 0 0 1 0
 1 0 12 0
 0 0 2 0
 3 0 1436 0
 0 0 101 0
 7 0 613 0

Finally, it is possible - and probably most useful - to determine the statistics for your own session.
You can find your attachment id from CURRENT_CONNECTION and use that in a query that joins
with MON$IO_STATS using the MON$STAT_ID column.

SQL> SET LIST;

SQL> SELECT T.MON$ATTACHMENT_ID, T.MON$TRANSACTION_ID,
CON> IO.MON$PAGE_READS, IO.MON$PAGE_WRITES,
CON> IO.MON$PAGE_FETCHES, IO.MON$PAGE_MARKS
CON> FROM MON$TRANSACTIONS AS T
CON> JOIN MON$IO_STATS as IO
CON> ON (IO.MON$STAT_ID = T.MON$STAT_ID)
CON> WHERE T.MON$ATTACHMENT_ID = CURRENT_CONNECTION;

MON$ATTACHMENT_ID 12
MON$TRANSACTION_ID 218
MON$PAGE_READS 5
MON$PAGE_WRITES 0
MON$PAGE_FETCHES 66
MON$PAGE_MARKS 0

MON$ATTACHMENT_ID 12
MON$TRANSACTION_ID 217
MON$PAGE_READS 0
MON$PAGE_WRITES 0

Chapter 3. Using MON$IO_STATS

6

MON$PAGE_FETCHES 1
MON$PAGE_MARKS 0

Chapter 3. Using MON$IO_STATS

7

Appendices

8

Appendix A: Document history
The exact file history is recorded in the firebird-documentation git repository; see
https://github.com/FirebirdSQL/firebird-documentation

Revision History

1.0 5. Jan
2010

ND Created a new manual based on a posting to Firebird-support by Ann
Harrison.

1.1 21 Jun
2010

ND Amended to include the fact that it is possible to extract the statistics for the
current connection. Contrary to what was said before.

1.2 28 May
2020

M
K

Converted document to AsciiDoc.

Appendix A: Document history

9

https://github.com/FirebirdSQL/firebird-documentation

Appendix B: License notice
The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this License.
Copies of the License are available at https://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and
https://www.firebirdsql.org/manual/pdl.html (HTML).

The Original Documentation is titled Firebird Database Cache Buffer.

The Initial Writer of the Original Documentation is: Norman Dunbar using data supplied by Ann
Harrison.

Copyright © 2010–2020. All Rights Reserved. Initial Writer contact: NormanDunbar at users dot
sourceforge dot net.

Contributor: Martin Köditz – see document history.

Portions created by Martin Köditz are Copyright © 2020. All Rights Reserved. Contributor contact:
martin dot koeditz at it dash syn dot de.

Appendix B: License notice

10

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html

	Firebird Database Cache Buffer
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The Firebird Cache
	Chapter 3. Using MON$IO_STATS
	Appendices
	Appendix A: Document history
	Appendix B: License notice

