Firebird 2.0 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
4 Oct 2024, document version 1.2 — covers Firebird 2.0-2.0.6

Firebird 2.0 Language Reference Update

Everything new in Firebird SQL since InterBase 6

4 Oct 2024, document version 1.2 — covers Firebird 2.0-2.0.6
Paul Vinkenoog et al.

Table of Contents

O gL (0T 18 i1 o] o OO PP TPPPRP PP 1
VEISIONS COVENEA ...coeiiieiieeeiiee ettt ettt e e ekt e e e et et e e e e et e e e st e e e e b e et e e e sne e e e e annn e e e e nnnnneeenanes 1

L U110] o O P PP PPP PP PPPPRPPRPRIN 2

2. Reserved WOords and KEYWOITSoooiiriiieiiiii ettt a e s e e e e e e annneee s 3
Added SINCE INTEIBASE 6oeeiiiiiie et e e e s e s 3
NEWIY TESEIVEA WOITS ...ttt e e e e s e e e s annneeas 3

INEW KEYWOITS ...ttt ettt ettt e ettt e e ek e e e e s st e e s e b e e e e annr e e e e e nnneeenn 3

Dropped SINCE INTEIBEASE 6viiieiiiiiie et e e e e e es 4

NO [ONGEN TESEIVED ...ttt e et e st e e e e e e e ase e e e e anne e e e s annreeeeans 4

NO 10NGEN KEYWOITS ...ttt e e s e e e s e e e es 4

POSSIDlY reserved in fULUrE VEISIONSoiiiiiiieeiii ettt 5

3. Miscellaneous 1aNgUAJE ElEIMENLEScuuiiiiiiiiie et e e s e e e e nneeeas 6
== (SINGIE-TINE COMMIBNT)eeieeiiiee et e e e e e e e e s e e e e ennneeas 6
SNOMNBNG CBSES ... et e e e e e s e e e e e e s eas 6
L7 oo 1 1 7
SIMPIE CASE .ottt et e e e h et oo e et e e e et e et e e e e e e e e e s 7

SEAMCNEA CASE ...tttk e e oo e e e e e R e e e e e e e s 8

4. Data types and SUBLYPESooiiiiiiieiiiiiee ettt e e e e e e e e e e e e e e e 9
BIGINT GBEA LY ...teeeeiiiiiee ettt ettt ettt e e e et e e e s e e e e e s e e e e e bt e e e e nne e e e e ennne e e s annneeas 9
BLOB T8LA TY[0E .. .tveeeeitteie ettt ettt ettt e ekt ee e et e e e e e e e e e bt e e e et e e R e e e e e e e e nnrne e e 9
NEW ChEIBCIEN SEESeieeeeii ittt e e et e e e e e e e e e e e e e e anrnneeen 10
Character set NONE handling Changedooooiiiiiiiiiiec e 11
INEW COHBEIONS ...ttt ettt e e e e e et e e ek et e e et e e e e e e e e e anb e e e e e annnee s 11

5. DDL SEBLEMIENLScoiiieeerieeeee e e e e st r e e e e e st e e e e e e e s s s e e e e e e e e s s s s e e e e e e e s e saannnr e e e e e e e e e e e a e e eeas 13
ALTER DATABASE ..ooiiiiittiiee ettt ettt e e ekt e e e o st e e e e s b et e e e s e e e e e b e e e e e e anbn e e e e e nnn e e e e e 13
BEGIN BACKUP ...cciiteeie ittt ettt ettt e e s et e e et e e e e s e e e s e nne e e e s annr e e e e annneneeeanns 13

END BAGCKUP ...ttt ettt ekttt e e ek et e et e e e s e e e e e bn e e e e e e nnne e e e aannneeeen 14

ADD DIFFERENCE FILEoiiiiiiiiiiie ettt ettt e e e e s e e s e e e 14

DROP DIFFERENCE FILEoiiiiiitiiieiiieeee ettt e e s e e e 14

ALTER DOMAIN ittt ettt ettt e ettt e e ekt e e e e bt e e 4 s et e e e s e e e e a b e e e e e e nnn e e e e annn e e e e nnnes 15
RENAIME TOMAIN ...t e e e e e e e e e s e e e nnnees 15

SET DEFAULT t0 any CONteXt Variablecoeiiiiiiiiieiieec e 15

ALTER EXTERNAL FUNCTION ..iitiiiiiitiie ettt e sttt e e st e e e e s assne e e s assee e e s e e e e s snnneeeeannnneeens 15
ALTER PROCEDUREcciiuttiiiiiititte ettt a ettt e st e s st e e st e e s s e e e e e st e e e e aasnn e e e e annneeeeanrneeenann 16
Default argumMENT VAIUEScooiiiiiiieiieee ettt e e e e nnnes 16
Restriction on altering USed ProCEAUIESeeiiiiiriiieiiiieee et ssnree e e aaes 16

ALTER SEQUENCEciiiiitiiie ittt e ettt ettt e e et et e e e st e e e et e e e e s e e e e nb e e e e e e nnn e e e e anne e e e e nnnes 17
ALTER TABLE ..eiiiiiiitiii ettt ettt e et e e ettt e ettt e e e Rt e e e e b e e e e e e nne e e e e e n e e e e nnrn e e e 17
ADD column: Context variables as defaultscoooiiiiiiiiiiie e 17

ALTER COLUMN: DROP DEFAULT ...outiiiiiiitiet ettt et e e s nsnn e e e e e 18

ALTER COLUMN: SET DEFAULT ..etiiiiiiiiiiee ittt e e et e et e e s e s s e e s s e e s annnn e e s nnnnneeeens 18

ALTER COLUMN: POSITION NOW 1-D8SEdooiiiiiiiiiiiiiie e 19

CHECK aCcCeptsS NULL OULCOIMEccciiiiiiiiiiiiieiiie ettt 19

FOREIGN KEY without target column referenCes PKoeooiiiiiieiniiiiee e 19

FOREIGN KEY creation no longer requIreS eXClUSIVE @CCESSovvrreeiimrrreeiireeeessineeeesainneeens 20

UNIQUE constraints NOW allOW NULLSuvuvuiuiiiiiiiiiiiniiiuiniiininrnenrninrernrnrmn...——.n. 20

USING INDEX SUBCIAUSEoeiiiiiiiieiiieie ettt 20

ALTER TRIGGER ...ittitieiitiie ettt e et e e ekttt e e et e e e sn et e e e bt e e e e e annn e e e e e nnn e e e e nnnes 20
MUITI-ACHION TrIGOES ...evteeeeiiieie ettt e e e e e e e e e e s et e e e e e nne e e e e anr e e e e s anneneeeanes 21

Firebird 2.0 Language Ref. Update

Restriction 0N altering USEO trIgOENSeeeeiureieeiiiieie ettt e et e e 21
PLAN allOWEd 1N trIQQEN COURueiieiiiiiiee ettt e e e e e e aaes 21
ALTER TRIGGER no longer increments table change countccccooviiveeiiiiiec v 21
(000 1Y 1 Y 1 N TSSO P RPN 22
CREATE DATABASE ...oiiiutiieitita ittt ettt ettt ettt e bt e e et e e e at e e e e bt e e e kbt e e ket e eabe e e sabe e e anbe e e snbe e e nnbeeeanbeeennes 22
16 KD page SIZ€ SUPPOITEAeeieiiiiiiieiiii ettt e e e e s e e e s as 23
DIFFERENCE FILE PAraMELESoeiiiiiiiiieeitiiee ettt e e sttt et e e s e e e s s e e e s annnn e e e e nnnees 23
CREATE DOMAIN ittt ettt ettt ettt ettt ettt ettt e e st e e ekt e e kb e a2k e e e o ket e e abe e e emb e e e amb e e e anbeeeanbeeeneeennnes 23
Context variables as defaUITSoooiriiiiii e 23
CREATE EXCEPTION ...tiiittitetteeaiteeasttte ettt e s tee e st e e aabe e e aabe e e sabe e e aabe e e asbe e e aabe e e abbeeeabaeeebeeeabneeannneens 23
MesSage 1eNGEN TNCIEASEMuiiiiiiiii e 24
CREATE GENERATOR .. uttteiutiteateeesteeeasteeeastteeatteeaatseeabseeabeeeaabe e e asbe e e aabe e e ambe e e asbeeebbeeanneeanneeeanes 24
CREATE SEQUENCE PFEFEITEAccoiiiiiieiiiiiie ettt e e 24
Maximum number of generators significantly raiSedcccveeiiiiiiiiiniiiee e 24
CREATE INDEX . .ttteitteeettte ettt ettt sttt ettt e et e e it e e e ab e e ekt e e e ahe e e e kbt e e bb e e e abe e e e abe e e e abe e e enbeeeanbeeennneeeas 25
UNIQUE iNdiCeS NOW allOW NULLS ...ccoviiiiiiiiiiiieicceeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessssasaesssesesssennes 25
INAEXING ON EXPIESSIONSeeeeiiiieieeaitteee e ettt e e et e e e e e sb et e e e abbr e e e s sbe e e e e anbe e e e s anbe e e e s annneeeeannnneas 25
Maximum index key 1ength iNCreasedc.ooooiiiiiiie e 26
Maximum number of indices per table INCreasedooooiiiiiiiiiiiiee e 26
CREATE PROCEDUREtiiiiitiiaiitieaattte ettt ettt e et e e be e e st e e asbe e e aabe e e abee e s be e e e be e e anbeeesnbeeennbeeennbeeennes 27
CREATE SEQUENCE ...eutiieittieeetteeeaitee ettt e att e et e e s be e e aabe e e sabe e e aabe e e amb e e e ehb e e e ebee e e be e e e beeeanbeeeanneeennes 27
(0 I 7Y = RSP UPRUPRRTRR 28
CHECK aCCePtS NULL OULCOIMEceiiiiiiiiiiiiiiiieieee ettt 28
Context variables as coOlumMN defaUItSc.uviiiiiiiiie e 29
FOREIGN KEY without target column referenCes PKeevoiiiiiieiiiiiiee e 29
FOREIGN KEY creation N0 |onger requireS EXClUSIVE @CCESSccuvrreeirrrrieeiiieeeessineeeesnnnneeens 29
UNIQUE constraints NOW allOW NULLSuuuvuiuiiiiiiiiiiiiiuieisiirnrernrnrninrerernrnenn....———. 30
USING INDEX SUBCIAUSEeeiiiiiiiieiiie ettt 30
CREATE TRIGGERuttiiiitieaitee ettt ettt ettt ettt e st e e s ab e e sab e e e sab e e e e st e e e ab e e e be e e e be e e anbeeeanbeeeanneaens 31
LU oo o o = £ T PSP PP P PUPPPPUPPPPPN 32
CREATE TRIGGER no longer increments table change countccoooiveeiiiiiicciiiieee e 32
PLAN allOWeEd N trIgQEN COURvviieiiiieiie ettt e e e s e e e e e 32
CREATE VIEW ittt ettt ettt ettt ettt ekt ekt 4 ke e 4kt e 4 a b e £ o4 mb et oo a ket e am bt e e aab e e e enb e e e bbeeebneesnnneeen 33
Full SELECT SyNntaX SUPPOITEAoeeiiieieeiiiieee ettt et e e et e e s e e e 33
PLAN subclause disallowed in 1.5, realowed IN 2.0covviiiiiiiiieie e 33
Triggers on updatable views block auto-writethroughcoocveiiiiiiiiiee e 33
View with non-participating NOT NULL columns in base table can be made insertable............... 34
CREATE OR ALTER EXCEPTIONctiiiitttiaiitiiteeaatteeeeaaitseeesaisseeeaamse e e e s anbsneesassseeesannneeessnnnneeeans 34
CREATE OR ALTER PROCEDUREutiiiiiitiiieaiiieee e s ettt e et e st e s et e e s asnn e e e s annnn e e s ennnneeeeanes 35
CREATE OR ALTER TRIGGERuitiiiiiitiitee ittt ettt st e st e e s s e e e s ansae e e e s nnnn e e s nnnne e e 35
DECLARE EXTERNAL FUNCTION ...eitiiiitiiteiaiieeee ettt e e st ee e st e e e astee e e s assse e e e aanneeaesnnnneeesannneees 35
BY DESCRIPTOR ParaMELEr PASSING ...eeeeouvrreeeiurrreeeaitrreesasreeessasssreessassseeessssnsessasnsesssnsnseees 36
RETURNS PARAMETER N .uttiiiitie ettt ettt ettt ettt ettt e e et e e smb e s st e e e nne e s neeesnneeennes 36
DECLARE FILTER uttieiutitaaitee ettt attee ettt e ettt e bt e s be e e s ke e e s abe e e eab e e e aab e e e amb e e e e mb e e e abb e e e abb e e eneeeeneeeennes 36
DROP GENERATOReiiititiitteattteattee ettt e asteeeastee e stee e sse e e be e e aabe e e aabe e e ambe e e sabe e e ambe e e asbeeenneeeanneeanneas 37
DROP PROCEDWUREcouttitiiiiittte ettt e e ettt e sttt e ettt e e s aabee e e e 2 st e e e as et e e e anbe e e e e anbe e e e e annrn e e e e annnes 38
Restriction on dropping USEA PrOCEAUIESceiiiiurrieeiiiieiee it e e et e e st e e e e seeeeeeanes 38
DROP SEQUENCEctiiiittiteeaittte e e sttt e ettt e e ettt e e e ekt e e e e bt e e e e e as et e e e kbt e e e e e nbe e e e e ansee e e e e annne e e e ennnes 38
DROP TRIGGERceeiuttieittieeatteeeattee e attee ettt e abe e e s be e e sabe e e aabe e e oabe e e aab e e e ahb e e e ahb e e e hb e e e beeeeabeeeanbeeeanneeennes 39
Restriction on dropping USEA TrIGOENScoourrreeriiieiee et e et e et e e e s e s e e nnneees 39
DROP TRIGGER no longer increments table change Countcccveiiiiieeniiiee e 39
RECREATE EXCEPTION ..eutiititieeaieteateeeasteeaasteeeasteeaatteeaseeeabeeeabeeesabeeeambeeesmbeeeaabeeeanbeeaanneeeneeas 39

Firebird 2.0 Language Ref. Update

RECREATE PROCEDUREuuiiiiiiiiiettt et e e e e et eea e s e e e e ettt e tab s e e e e et ees s s b s e seeeseesesbaasseeseeseesrasannses 40
Restriction on recreating USEd PrOCEAUIEScooiiiriieiiiiriee ettt e e st e e e e e e seneeeeeeaaes 40

[o =Ny i N =] I TR 40
RECREATE TRIGGER ...cvttuuiiiiiiiiieettee et e e ettt s e e e e e s et ettt e e e e e e s e e e e s bt sseeeseeee e bbb s eeeeesess bbb eeeas 40
Restriction on recreating USEO trIGOENScoiurereeiiiirie ettt e ettt e e e 41
RECREATE VIEW <. iiiiiitt e e oo e ettt e e e e e et ettt e s e e e e eeeee e bt eeeeeeeee st e s eeeeseeeae b e seeseseesstaaasseeeees 41
REVOKE ADMIN OPTIONiiiiiittiieteeeeiiieete e s e e eaetees s s seeaesess s st eesasseesassaansssesseessssannseseesseenns 41
SET GENERATOR ...ttt e e e e ettt et et e e e e et e et e e e e e e e e ee et e s e eeeasee s s st s e seeaseeessbaa e eeeeessensbarannses 42
OIS 7= 1< < | YN 43
(3] = I = I TR 43
COLLATE subclause for text BLOB COIUNMINScoivueiiiiiieeeecie e eeeee e e et eesebs e s sabs s e e s e s 43
ORDER BY ittt e oottt et e ettt et e e e e e e ettt ettt e e eeee et ea et reeeeeetaea e teeeaetenaba i raraaseanrns 44
= TR 44
Relation alias makes real name UNaVaIlabIeooiiieeiiiiiieeeee e 44

[O LYY A TP 44
EXECUTE BLOGCK ...iiiiiiiiitttte e et e e e eeeett s et e e e et e e aa s s seeaee s e e e e seessesee s baa s seesaesessbasasesasesesssernansns 45
EXECUTE PROCEDUREtuuuiieiiiiieett e e e e e e ettt s e e e e e e et eaat s e e e e e e e e e ae b e e seesseesss bbb s eeeeeseesrarannses 47
1N S TR 48
RETURNING ClAUSE ...cottttiieieeeieettee s e e e e ettt s e e e e et e eaa et s e e eeesee s s abaseseesseesssaaanseseesseeesssannas 49
UNION allowed in feeding SELECTuiiiiiiiiieeiiiiiee et e st ibre e e e e 49

LS (4 TR 50
Aggregate functions: Extended fUNCLONEIITYcooouriiiiiiiiiee e 50

[AS] DEfOre relation @lia@Sccocuueiiiiiii e 52
COLLATE subclause for text BLOB COIUNMINSciivueieiiiieieecee e eecee e e e st eeseas e e s ssbs s e e s e 52
Derived tables (“SELECT FROM SELECT") .iiiiieiiiicieieieieaeeesesntieeeereaesssannsnneeeeeaeesssnnsnssseeeeeens 53

S ST = 010 IS] = 2T 54
GROUP BY ittt et oottt e e ettt e e e e e e ettt e et e e s eeeeseee et aa s eeeaases s s bbaesesssseassbaanseeeeseennes 55
HAVING: SHCLEN TUIES ..ttt ettt e et e ettt e e e et e e e s et s e s e etb s e s sesba s essssbnseaeens 56
0 T 56
ORDER BY .iiittttee e e et ettt et e e ettt e e et e e ettt e et e e eeeeteee et reeeeeeeeta e reeeeetarab i aaaaaaeinres 57
= TR 60
Relation alias makes real name UNaValabIeooiiieeiiiiiie e 61

[LYY A TP 61

(6N L) N TR 62
AV T L TR 63

(U= BN I =TT 64
COLLATE subclause for text BLOB COIUNMINSciivueieiiiieieecee e eecee e e e st eeseas e e s ssbs s e e s e 64
ORDER BY ittt e oottt et e ettt et e e e e e e ettt ettt e e eeee et ea et reeeeeetaea e teeeaetenaba i raraaseanrns 65
= TR 65
Relation alias makes real name UNaVaIlabIeoiiiieeiiiiiie e 65

[LYY A TP 65

7. TranSaction CONLIOl SEALEMENESuuiiieri e ee et e et e e e e e e et e e e s et e e s s et e e s s et e e s s st essebaaseeseransss 67
RELEASE SAVEPOINT ...iiiiiiiiitti e et e et ettt seeeeeeee ettt seseeasee et saasaseeasaessssaaassseesseesssssanseesseenssses 67
ROLLBAGCK etttttit e et e eee et e e et et ettt e e e e e e e e e ee et seeeaesee e bt b s eeeaasee s s et s eseeeseesesbaa s s seeesesessbaaaseees 67
ROLLBACK RETAIN L..iiiiiitttte et e e et eeeet e e e e e et et e te b s e s eeeees e s st seseeese s s bbb s eeeeeseenssbaanseseeeses 68
ROLLBACK TO SAVEPOINT ettiiiiiieiiietttee e s e e e e et eeetate e s e e e e e e e est s eeeeeseesasbasseeesseeesssaraeseeeees 68

ST A= = @ 1 i TR 69
INEErNAl SAVEPOINTSeiiiiie ettt et e e et e e e st e e e e e e e e nnr e e e e anrnneeean 70
SAVEPOINES BNG PSQL ...ttt e e e e e e e et e e e e e e e e ennees 70

SET TRANSACTION L..iiiieittie et e e et e ee et e e e e e e ettt e et e aeseeetate s s taa s seessesaesbas s eessesessbaaanasereessesssernnnsns 70
IGNORE LIMBO ...ttt ettt e e e e e ettt e e e e e e e et ettt e e e e e e s eee et b eeeeeeeessbaaaeseeaseseesasaannss 71

(0 T0: T B 11 1 = U ST 71

Firebird 2.0 Language Ref. Update

NO AUTO UNDO ..ttt ettt ettt e et e s sttt e e ekt e e e s s s e e e e e s be e e e e e b b et e e e ansbr e e e e anbeneeeannneeens 72

8. PSOL SEBIEIMENTS ...eeiiiiiiiiiiiiiiiiiiie ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et et et ettt e et e ettt eeeeeeeeeeeeeeaeeeeeeeeeeeseeeeeeees 73
BEGIN ... END blOCKS May D& EMPLY ...t 73
BREAK ettt ettt E e oo R £ oo oAb e £ e e 4R et oo e Rt e e e R R e et e e e R e e e e e e b e e e e nnees 73
CLIOSE CUISON ...eeetueeeeetu e eeeeta e e eeeta e e e eeta s e e ee s e e e ee s e e e ee e e e e eesaseeensa e eeensaseeensnseeensnnseeensnnaeennrnnaaee 74
DECLARE .. ittttt ettt ettt ettt e ettt e ookttt e 44k e e £ 4R R e e 4o R R e oo oA R e et e R b e et e e e R e et e e e b nr e e e e n e e e e nnnees 74
DECLARE ... CURSOR ...cciiiuttitieiitiiteeaaittee e e sttt e e e et e e s st et e e s s e e e e e nbe e e e s asee e e e e ansbeeeeaanbneeenns 75
DECLARE [VARIABLE] With iNiti@liZatiOnoooiiiiiiiiiiiicceiie e 76
EXCEPTION . ittttee ettt ettt ettt e skttt e e 4kttt e e ekt e o4 st e £ 424k b et o4 e n b b et e oo n bt et e e e sbe e e e e annne e e e e nnnnneeeans 76
Rethrowing a Caught EXCEPTIONveiieiiiiiee et 77
Providing @ CUSLOM EITON IMESSATEvveeeeiiieeeeiaitreeeaaitteeeesster e e s asae e e e e snn e e e e s asbreeeeanneeeeeannees 77
EXECUTE PROCEDWUREuutiiieiitiitee ittt e sttt e et e ettt e e st et e e s st e e e s anbe et e e s e e e e anbe e e e s annnneeeans 77
EXECUTE STATEMENT .oiiiiitiiieiitie ettt ettt e it e e e e st e e e et e e e e e s be e e e s aabee e e e asb e e e e e anbeeeenannnneeeans 78
NO T8EA FEIUMEA ...ttt e e s e e e e st e e e e abb e e e e e s bn e e e e anbeeeeeanes 78

ONE roOW OF daLA FELUMMEAeeiiieiiiiiee et e e s e e e e as 78

Any number of data rOWS rEfUMMEoouiiiiiiiee e 79
Caveats With EXECUTE STATEMENT ...oiiiiiiiieiiie ettt e s e e 79
3 OO PPPTPPRTPON 80
FETCH CUISOIetutttttttnenetenesseess e e e e s s e s e e e s e s e sesesenennnnnnnnnnnnnen 80
FOR EXECUTE STATEMENT ... DO ...uitiiiiiiiiiiee ettt ettt e st e e e e s e e e s 81
FOR SELECT ... INTO ... DO ottiiiiiitiieeeite ettt ettt e sttt e e et e e e et e e e s s e e e e annbn e e e s nnnneeeens 81
AS CURSOR ClAUSEceiiiuitiieeiaiiiet e e ettt e e ettt ettt e e ekt e e e et e e e e e ke et e e abb et e e e anbe e e e e annn e e e e annnneas 82
LAV E ittt ettt E et £ e oo R e e e e A R e et e oo AR et e e e e R b et e et e R e e e e e e n e e e e nrees 83
(@] = o U1 £ o PP 84
PLAN allOWE 1N TrIQGEN COURueeiiieiiiiiee ettt e e s e e e e e e e nrneeeen 84
UDFs callable as VOId FUNCLIONSuviiiiiiiiii ettt 85
WHERE CURRENT OF iNValid fOr VIBW CUISOISoviiiiiiiiieeiiii ettt 85
9. CONEEXE VAITAIIES ..ottt e et e ekt e e et e e e e b e e e e et e e e e e nne e e e e annes 86
CURRENT_CONNECTT ON ..oiitttte ettt ettt ettt e st e e e e e s e st e e e s anbs et e e e asne e e e e anbr e e e e annneeas 86
CURRENT _ROLE ..ottt e et e e st e e e et e e e e e e e e anrneeeaas 86
CURRENT _TI ME ettt etttk e ettt e e e sttt e e e Rt e e e e b e e e e e nbb e e e e e nbe e e e e annnneeeaas 87
(@t = N WY = Y = RO 88
CURRENT_TRANSACTT ON ...ovitieieeeeteeteeeteeeeteteeteeteseeteeteesesestessessesesesssessssessessssesaessasessessensaseses 88
CURRENT _USERcuviuiiteiteieteeteeteeeteeteete e ste st eeeseeteetesaeteste s essstestessaseetesessasestessesestessesssseseesnseaes 89
DELETT NG . eteeetttiee oottt e et e et ettt e s e e e e e e e ee s bt e e e e e e eeeeeeaa e e e e e e eeeensnnn e e eeeaeeeennnnnnn 89
(€ D510, B PP PP PP PPPRPRPPPRP 90
I INSERTT NG ..ttt oottt oot ettt e e 2 e e e e et e st e e e e e e eeeae s e e e e eaeeeeessbaa e e eaaeeeennnnnnaeeas 90
N PP 91
B 1O L PP PP PP PP PPP PP 91
L@ I PP PPP P PPPRPPON 92
ROWV COUNT .ottt ettt ettt e e sttt e o4ttt e e s Rt e 44kt e e 24kt e e e e s e e e e e et e e e e e e annr e e e e e nnees 93
(0 I B PP PP PP PPPPRPRPPPRP 93
UPDATT NG ettt e e ettt ettt e e e e e e e et ae s e s e e e e ae e e e s aba e s e e e aaeeensbbn e e eaeeeennnbnneeeas 94
10. Operators and PrefiCaLESooiiiuriieiiiiie ettt et e e e st e e e e e e e e e e sbe e e e e e bar e e e annnreeeeennees 95
NULL literals allOWed @S OPEIaNGScoouuriieiiiiiieee ittt e e e ees 95
[| (SEFING CONCBLENGLON) ..euetteeeeiiteee ettt ettt e e e e e ekt e et e e e e e e e ane e e e e e anbn e e e e anne e e e e annes 95
RESUIT tYPE VARCHAR ...ttt et e e et e e e e et e e e et e e e e nnees 95
OVETIOW CRECKINGeeeieeiieee e e e e e e e 96

2 I PP PP PPPPPRPTPPPRP 96
NULL [IteralS @llOWEDooiiiiiiiieeei ettt 96
UNION 8S SUDSEIECTeeeieiiiiiee ittt e e e st e e e e e e e e s anbneee e 96
ANY] SOME ...eteeiitte ettt ekttt oottt e e oAb et e e R et e e e n et e e e b e e e e e re e e e e 96

Vi

Firebird 2.0 Language Ref. Update

[N R 1 0= = o3z Lo Y=o I 96

O N0 = S T 015 c < o 97

I ottt et e e e e eee e e e e ea e eeeea e e e ea e eeeea e e e ea e e e ea e e ea et e e ea e e et e e eh et e e e e raraaaen 97
[N R 1 0= = Eo3R= Lo Y=o I 97

O N0 = S T 015 c < o 97

IS [NOT] DISTINCT FROM ...ocuviiuiiiiiuieiteeeteeteetteeteeete et e eteeteeseesteesteessesseenteesaesseeeteessesaeenteansesseennas 97
G Y7 I = 0 TN 98
L), = 99
O 1= = 0 0 Tox) TR 100
BIT _LENGTH() t.veeiteeuteitteeteeteeeteeeteeteeeteeeteeaeeeteeteeseesaeeteeseeebeesteessesbeenseesseabeansessaesreesseaseeseansesreas 100
A ST () ciiiii e 101
CHAR_LENGTH(), CHARACTER _LENGTH() .vveiveetieitieiteeteeteeiteesteereeeteesaesteesresnsesreeeaesneesseeneesseenns 102
COALESCE() eveveeuteetieiteeeteesteeteeeteeateeteeeteeseeeteeteeseeateeseesteebeesseesseessesseensessaebeansesseesaensesseensesneens 103
= 27X o | OSSR SR 104
GEN_ID() cuvetteteenteetteeteeete et e eteete et e e ueeteeaeeebeebe e st e eaeeebeeaseebeeteenteeae e beesteereeabeenbeeraeeteenreereeareentenns 105
TIF() +eveenteeueeete et eeae e et e et e eaeeete et e eaeeebe et e eaeeebeeateeaeeebeesbeeaeeebeente ek e e ebeeateeaeeebeenteeaeeabeenteeaeeateenteareeteans 105
LOWER() +.uvetteteeuteeuteeteeeteeseeeteeteeseeeteeeteeaeeeseebeeaseebeeteesseaseebeesseesseeseenseebseaseentesssesseensesseenseentens 106
NULLIF() +euteetteeteete et e ete et e et e et e et e et e eteeete e e e eteebeeseesbeeateeseease e beensesaaesseenseesseaseensesssesreenseeseesseensans 106
OCTET_LENGTH() veeveeuteiteeeteeuteeteeeteeteeteeeteeteeteeeteesteaseeeteeaeeseesbeenseesseasaeseesseabeenseansesseenseeneearis 107
RDBSGET _CONTEXT() uveeuveiueeteetieetteiteestesseeeteaseeaseesasaseesseasseasseaseensessseaseesseasseaseensesssesseensesssessens 108
RDBSSET _CONTEXT() +veuveeuteiteeeteeteeseeiteeseeseeeseeteaseesseeseesseaseesseassesseessesssesseassesssesseessesssesseesenns 109
SUBSTRING() +.uvveuveeuteateeeteeteeseeeteesteaseesteessesseeaseasseaseeassassesseesseasseassesseessesssesseessesssessesnsesseeaseaneeas 110
B2 L T 111
UPPER() +.uvtetteiteeteetteeteeeteesteeteeeteeateeaeeeteesteebeeeseeaseeseeeseesseeseebeenseeaseeteesseeaseabeantesaseateenteeneeareenre e 112
12. External fUNCLIONS (UDFS)ooiiiiiiiiiiiiie ettt e e e e e 114
= Yo [0 1 = Y 114
= Lo [0 | 11 | 114
F= Lo [0 11V, I RS TSY o2 o] o [N 115
= Lo [0 1Y I L0 = 115
F= Lo [0 1LY, 0 o | S o 115
F= Lo [0 ISTSY o2 o] o [R 116
F= L0 [0 ALY 116
= Lo [0 I ST | 117
ASCI I _Char 117
o [0 111V 118
[0 0T 0 1Y T 118
OO EXACT Ti IMEST @ITP i 119
IS o 1 U o [119
ST A U (= X 119
L O e 119
10 1. 120
N = Lo T 121
O T 0 122
S 101 I T T 123
Ea 1174 124
L= 1 o R 125
F T Gt 125
(0T 1 o I I S o 10 o o T 125
0 = Lo TP 126
T T 0 127
LYo [0 111V 128
L =1 [T 129

Vii

Firebird 2.0 Language Ref. Update

LS 1 | 0 R 129

L3 A ST Yo 122 o I o] TP 129

LS S = o R 130

LS 011 A 130
SUD S Tl BN e 131
ETUNCAL €, 1 BAL FUNCAL © .oiieeiiii ettt e et et e e e e s e s et e e s e e eaa e s abn s eraneeernss 132
APPENAIX AL INOLES ...ttt e e et e e ekt e e e e ke et e e e aa b b et e e e nb e e e e an e e e e e e e e e nnes 134
Character set NONE data aCCEPIEA “8S IS” ...vviieiiiiiiieeiiiiie e ettt e ettt 134
Understanding the WITH LOCK ClAUSEccoiiuriieeiiiiee et 135
Syntax and DENAVIOUNuiiiiiii e 135

How the engine dealS With WITH LOCKcoiiiiiiiiiiiiiee ettt 136

The optional “OF <col umM- NaMeS>" SUD-ClAUSEcuvviiiiiiiie e 137

CaveatS USING WITH LOCK .. .uiiiiiiiiiiieieiieie e ettt e st e st e ettt e e s e e s s e e e s annnn e e e s nnnneeas 137

Examples using eXpliCit I0CKINGueiieiiiiiieeiii e 137

A NOte 0N CSTRING PAIAMELENSeerereieieieiereierererererererererere e re e rerererererererennrnnnns 137
Passing NULL t0 UDFS iN FIrehird 2cooiiiiiiiiiiee et 138
“Upgrading” i b_udf functionsin an existing databasecccceeviiiieeiiiiiieenieece e 139
Maximum number of indices in different Firebird VErSIONSccveeeiiiiiieiiiiiice e 139
AppendixX B: DOCUMENT HISIOTYueiiiiiiiii ittt e st e e nnnee s 140
APPENAIX C: LICENSE NOLICEeeeeeeiiiee ettt e et e e e bbb e e e e ab bt e e e st et e e annbee e e e anreeeenns 144

viii

List of Tables

4.1. Character SetS NEW iN FIFEDITT ... e e e e s e et e e e e e e e s e nanneeees 10
4.2, Collations New iN FIFrEhirdc.uuuiiiiiee e e e e e s e et e e e e e e e s seanrraereeaens 11
5.1. Maximum indexable (VAR)CHAR IENGLN ... 26
5.2. Max. indices per table, FIrebird 2.0ooiiiiiiiiiieiiee e s 26
6.1. NULLs placement in ordered COIUMNSc.ooiiiiiiiiiiiiiee e e e e e e e e e e e eaneees 59
10.1. Comparison of [NOT] DISTINCT t0 “=" and “<>" .. .ot e s 98
T 0 1SS o =T @7 IR 102
11.2. RANQES fOr EXTRACT FESUILS ...veiiieei ittt e ettt e e e e e e e e e s st e e e e e e e s e e nntbrereeaaeeeeaans 104
11.3. Context variables in the SYSTEM NAMESPACEcccoeivviiiiiiiee e e iiiiieeee e e e e e s s siitaaereee e e e s e snnnsaneeeeeas 108
A.1l. How TPB settings affect expliCit I0CKINGuvveiiieiiiiiiiieiee e 135
A.2. Max. indices per table in Firebird 1.0 — 2.0 ...ccoooiiiiiice e 139

Chapter 1

Introduction

Tip

This documentation is outdated. Find a more recent Firebird Language Reference at Firebird 5.0 L anguage
Reference

For other documentation, visit Firebird Documentation Index

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.0.x.
It coversthe following areas:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipulation Language)

» Transaction control statements

e PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Context variables

» Operators and predicates

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 2.0 SQL reference, you need:

» ThelInterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht nl)
* Thisdocument

Topics not discussed in this document include:

* ODSversions

» Buglistings

 Instalation and configuration

» Upgrade, migration and compatibility
» Server architectures

» AP functions

» Connection protocols

» Toolsand utilities

Consult the Release Notes for information on these subjects. You can find the Release Notes and other
documentation via the Firebird Documentation Index at https://www.firebirdsgl.org/en/documentation/.

Versions covered

This document covers al Firebird versions up to and including 2.0.6.

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/en/documentation/
https://www.firebirdsql.org/en/documentation/

Introduction

Authorship

Most of this document was written by the main author. The remainder (5-7%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included materia are:

* J Beedey

» HelenBorrie

* Arno Brinkman

* Frank Ingermann

* Alex Peshkov

* Nickolay Samofatov
* Dmitry Yemanov

Chapter 2

Reserved words and keywords

Reserved wordsare part of the Firebird SQL language. They cannot be used asidentifiers (e.g. table or procedure
names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless you have
acompelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. Y ou can use them as identifiers without double-quoting.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT
BIT LENGTH

BOTH

CASE

CHAR_LENGTH
CHARACTER LENGTH
CLOSE

CROSS
CURRENT_CONNECTION
CURRENT ROLE
CURRENT_TRANSACTION
CURRENT USER

FETCH

LEADING

LOWER

OCTET_LENGTH

OPEN

RECREATE

RELEASE

ROW_COUNT

ROWS

SAVEPOINT

TRAILING

TRIM

USING

New keywords

The following words have been added to Firebird as non-reserved keywords:

Reserved words and keywords

BACKUP
BLOCK
COALESCE
COLLATION
COMMENT
DELETING
DIFFERENCE
IF
INSERTING
LAST

LEAVE
LOCK

NEXT
NULLIF
NULLS
RESTART
RETURNING
SCALAR _ARRAY
SEQUENCE
STATEMENT
UPDATING

Dropped since InterBase 6

No longer reserved

The following words are no longer reserved in Firebird 2.0, but are still recognized as keywords:

ACTION
CASCADE
FREE_IT
RESTRICT
ROLE
TYPE
WEEKDAY
YEARDAY

No longer keywords

The following are no longer keywordsin Firebird 2.0:

BASENAME
CACHE
CHECK_POINT_LEN
GROUP_COMMIT_WAIT
LOG_BUF SIZE
LOGFILE
NUM_LOG_BUFS
RAW_PARTITIONS

Reserved words and keywords

Possibly reserved in future versions

The following words are not reserved in Firebird 2.0, but should be avoided as identifiers because they will
likely be reserved in future versions:

ABS
BOOLEAN
FALSE
TRUE
UNKNOWN

Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Tip

Find amore recent version at Firebird 5.0 Language Reference: Comments

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - ” (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - " can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

-- atable to store our val ued custoners in:
create table Custoners (

nane var char (32),

added_by varchar (24),

custno varchar(8),

pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Shorthand casts

Tip

Find a more recent version at Firebird 5.0 Language Reference: Datetime Literals

Availablein: DSQL, ESQL, PSQL

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-structure-comments.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-datetime-literal

Miscellaneous language elements

Added in: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird alows the use of a
shorthand “C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:
datatype 'date/tinmestring
Examples:

updat e People set AgeCat = 'Ad'
where BirthDate < date '1-Jan-1943

insert into Appointnents

(Enpl oyee_Id, dient_Id, App_date, App_tine)
val ues

(973, 8804, date 'today' + 2, tinme '16:00")

new. | astnod = timestanp ' now ;

See also: CAST

CASE construct

Tip

Find amore recent version at Firebird 5.0 Language Reference: CASE

Availablein: DSQL, PSQL
Addedin: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There aretwo syntactic
variants:

e Thesimple CASE, comparable to aPascal case oraCsw t ch.
» The searched CASE, which workslikeaseriesof “if ... else if ... else if” clauses

Simple CASE
Syntax:

CASE <expr essi on>
WHEN <expl> THEN resultl
WHEN <exp2> THEN resul t2

[ELSE defaul tresult]
END

When thisvariant isused, <expr essi on> iscompared to <expl>, <exp2> efc., until amatch isfound, upon
which the corresponding result is returned. If there is no match and thereis an ELSE clause, def aul t r esul t
isreturned. If there is no match and no ELSE clause, NULL is returned.

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-conditional-case

Miscellaneous language elements

The match is determined with the “=" operator, so if <expr essi on> is NULL, it won't match any of the
<expN>s, not even those that are NULL.

The results don't have to be literal values: they may aso be field or variable names, compound expressions,
or NULL literals.

Example:

sel ect nane,
age,
case upper (sex)
when 'M then ' Mal e’
when 'F' then ' Fenal e’
el se ' Unknown'
end,
religion
from peopl e

Searched CASE
Syntax:

CASE
WHEN <bool _expl> THEN resultl
VWHEN <bool _exp2> THEN result2

[ELSE defaul tresult]
END

Here, the <bool _expN>s are tests that give a ternary boolean result: t rue, f al se, or NULL. The first
expression evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause,
def aul t resul t isreturned. If no expression is TRUE and thereis no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVote = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;

Chapter 4

Data types and subtypes

BIGINT data type

Tip

Find amore recent version at Firebird 5.0 Language Reference: BIGINT

Added in: 1.5

Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It isavailable in Dialect 3 only.

BIGINT numbers range from -2%% .. 25%-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.

Example:

create tabl e Wol eLott aRecords (
id bigint not null primry key,
description varchar (32)

)

BLOB data type

Tip

Find amore recent version at Firebird 5.0 Language Reference: Binary Data Types

Changedin: 2.0
Description: Several enhancements have been implemented for text BLOBS:
DML COLLATE clauses are now supported.

» Equality comparisons can be performed on the full BLOB contents.

» Character set conversions are possible when assigning aBLOB to aBLOB or astring to aBLOB.
When defining binary BLOBS, the mnemonic bi nary can now be used instead of the integer O.

Examples:

sel ect NameBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao'

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-datatypes.html#fblangref50-datatypes-bigint
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-datatypes-bnrytypes.html

Data types and subtypes

create table MyPictures (

idint not null
title varchar(40),

primary key,

descri ption varchar (200),
pi cture bl ob sub_type binary

Addedin: 1.0, 1.5, 2.0

New character sets

The following table lists the character sets added in Firebird.

Table4.1. Character setsnew in Firebird

Name Max bytes/ch. L anguages Added in
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 =DOS850 plus€ sign 15
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15
1SO8859 2 1 Latin-2, Central European 1.0
1SO8859_3 1 Latin-3, Southern European 15
1SO8859 4 1 Latin-4, Northern European 15
1SO8859_5 1 Cyrillic 15
1SO8859_6 1 Arabic 15
1SO8859_7 1 Greek 15
1SO8859_8 1 Hebrew 15
1SO8859 9 1 Latin-5, Turkish 15
1SO8859_13 1 Latin-7, Baltic Rim 15
KOI8R 1 Russian 20
KOI8U 1 Ukrainian 20
uTFg) 4 Al 2.0
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15

10

Data types and subtypes

Name Max bytes/ch. L anguages Added in
WIN1257 1 Baltic 15
WIN1258 1 Vietnamese 2.0

®In Firebird 1.5, UTF8 is an alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTFS is a character set
in its own right, without the drawbacks of UNICODE_FSS.

Character set NONE handling changed

Changedin: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trangdliteration errors. For more details, see the Note at
the end of the book.

New collations

Addedin: 1.0,1.5,1.5.1,2.0

The following table lists the collations added in Firebird. The “Details’ column is based on what has been
reported in the Release Notes and other documents. The information in this column is probably incomplete;
some collationswith an empty Detailsfield may still be caseinsensitive (ci), accent insensitive (ai) or dictionary-
sorted (dic).

Table4.2. Collationsnew in Firebird

Character set Coallation Language Details Added in
1S08859 1 ES ES ClI_Al Spanish ci,a 2.0
PT_BR Brazilian Portuguese ci,a 2.0
1SO8859 2 CS Cz Czech 10
ISO_HUN Hungarian 15
ISO_PLK Polish 20
1SO8859 13 LT LT Lithuanian 151
UTF8 UCS BASIC All 2.0
UNICODE All dic 2.0
WIN1250 BS BA Bosnian 2.0
PXW_HUN Hungarian Ci 1.0
WIN_CZ Czech Ci 2.0
WIN_CZ_CI_Al Czech Ci, a 20

11

Data types and subtypes

Character set Collation Language Details Added in
WIN1251 WIN1251 UA Ukrainian and Russian 15
WIN1252 WIN_PTBR Brazilian Portuguese ci,a 2.0
WIN1257 WIN1257_EE Estonian dic 2.0

WIN1257 LT Lithuanian dic 2.0
WIN1257 LV Latvian dic 2.0
KOI8R KOI8R_RU Russian dic 2.0
KOI8U KOI8U_UA Ukrainian dic 2.0

A note on the UTF8 collations

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, &, b, B...

The UCS BASIC collation sorts in Unicode code-point order: A, B, a, b, a... Thisis exactly the same as UTF8
with no collation specified. UCS BASIC was added to comply with the SQL standard.

12

Chapter 5

DDL statements

Tip

Find a more recent version at Firebird 5.0 Language Reference: Data Definition (DDL) Statements

ALTER DATABASE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DATABASE

Availablein: DSQL, ESQL
Description: Alters a database's file organisation or togglesits “ saf e-to-copy” state.
Syntax:
ALTER { DATABASE | SCHEMA}
[<add_sec_cl ause> [<add_sec_cl ause> ...]]
[ADD DI FFERENCE FILE 'filepath' | DROP DI FFERENCE FI LE]
[{BEG N | END} BACKUP]
<add_sec_cl ause> ::= ADD <sec_file> [<sec_file> ...]
<sec_file> ::= FILE "filepath
[STARTI NG [AT [PAGE]] pagenuni
[LENGTH [=] num [PAGE[9]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not availablein ESQL.

BEGIN BACKUP
Availablein: DSQL
Added in: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

al ter dat abase begi n backup

13

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html#fblangref50-ddl-database

DDL statements

END BACKUP
Availablein: DSQL
Addedin: 2.0

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
gbak are still possible.)

Example:

al ter database end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Presets path and name of the deltafile to which mutations are written when the database goesinto
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:
alter database add difference file 'C. \Firebird\ Dat abases\ Fruitbase. delta’
Notes:

» This statement doesn't really add any file. It just overrides the default path and name for the delta file that's
going to be created if and when the database enters copy-safe mode.

» |If you provide arelative path here (or a bare filename), it will be appended to the current directory as seen
from the server. On Windows, thisis often the system directory.

 If you want to change an existing path and name, DROP the old one first and then ADD the new one.

* When not overridden, the delta file gets the same path and filename as the database itself, but with the
extension. del t a

DROP DIFFERENCE FILE
Availablein: DSQL

Added in: 2.0

14

https://www.firebirdsql.org/en/documentation/

DDL statements

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop a file. It only erases the name and path that would
otherwise have been used the next time around and reverts to the default behaviour.

Example:

al ter database drop difference file

ALTER DOMAIN

Tip

Find amore recent version at Firebird 5.0 Language Reference: DOMAIN

Availablein: DSQL, ESQL

Rename domain
Addedin: IB

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:
alter domain posint to plusint

* The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable
Changedin: IB

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter donmi n DDat e
set default current _date

ALTER EXTERNAL FUNCTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXTERNAL FUNCTION

Availablein: DSQL

15

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-domn.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-extfunc.html

DDL statements

Added in: 2.0
Description: Altersan external function's module name and/or entry point. Existing dependencies are preserved.
Syntax:

ALTER EXTERNAL FUNCTI ON funcnane
<modi fication> [<nodi fication>]

<nodi fication> ::= ENTRY_PO NT 'new entry-point'
| MODULE_NAME ' new nodul e- nang'

Example:

alter external function Phi nodul e_name ' NewUdf Li b'

ALTER PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

Availablein: DSQL, ESQL

Default argument values
Added in: 2.0

Description: You can now provide default values for stored procedure arguments, alowing the caller to omit
one or more items from the end of the argument list.

Syntax:
ALTER PROCEDURE procnane (<inparan® [, <inparam> ...])
<inparank .= paramane datatype [{= | DEFAULT} val ue]

Important: If you give a parameter a default value, all parameters coming after it must also get
default values.

Example:

alter procedure TestProc
(aint, bint default 1007, s varchar(12) ="'-")

Restriction on altering used procedures

Changedin: 2.0, 2.0.1

16

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html

DDL statements

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

ALTER SEQUENCE

Tip

Find amore recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Availablein: DSQL

Added in: 2.0

Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have always called agenerator. “ ALTER SEQUENCE ... RESTART WITH” isfully
equivalent to “ SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.

Syntax:
ALTER SEQUENCE sequence-name RESTART W TH <newal >

<newal > ::= A signed 64-bit integer val ue.
Example:

al ter sequence seqtest restart with O

Warning

Careless use of ALTER SEQUENCE is a mighty fine way of screwing up your database! Under normal
circumstances you should only use it right after CREATE SEQUENCE, to set theinitial value.

See also: CREATE SEQUENCE

ALTER TABLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults

Changedin: IB

17

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

Description: Any context variable that is assignment-compatible to the new column's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
add MyDay date default current_date

ALTER COLUMN: DROP DEFAULT
Availablein: DSQL
Added in: 2.0
Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or — if the column's type is a DOMAIN with a default — the domain default
will resurface.
Syntax:
ALTER TABLE tabl enane ALTER [COLUMN] col name DROP DEFAULT
Example:
alter table Trees alter Grth drop default
Anerror israised if you use DROP DEFAULT on acolumn that doesn't have a default or whose effective default
is domain-based.
ALTER COLUMN: SET DEFAULT
Availablein: DSQL
Added in: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column already had
adefault, the new default will replace it. Column-level defaults aways override domain-level defaults.

Syntax:

ALTER TABLE tabl ename ALTER [COLUMN] col nanme SET DEFAULT <def aul t >

<default> ::= literal-value | context-variable | NULL
Example:

alter table Custoners alter EnteredBy set default current_user

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

18

DDL statements

ALTER COLUMN: POSITION now 1-based

Changedin: 1.0

Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.

Syntax:
ALTER TABLE t abl enanme ALTER [COLUMN] col nanme PCSI TI ON <newpos>

<newpos> ::= an integer between 1 and the nunber of colums
Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain 0-
based.

CHECK accepts NULL outcome

Changed in: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLS pass and only consider the check failed if the
outcomeisf al se. For moreinformation see under CREATE TABLE.

FOREIGN KEY without target column references PK
Changedin: IB

Description: If you creste aforeign key without specifying a target column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
aint not null primry key,
b int not null unique

);

create table beuk (
b int

);

19

DDL statements

alter table beuk
add constraint fk_beuk
foreign key (b) references eik;

- beuk.b now references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changedin: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

UNIQUE constraints now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For afull discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAI NT constrai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASC[ENDI NG | DESC] ENDI NG] | NDEX i ndex_nane]

For afull discussion and examples, see CREATE TABLE :: USNG INDEX subclause.

ALTER TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

Availablein: DSQL, ESQL

Description: Alters an existing trigger. The table or view that the trigger belongs to cannot be changed.

20

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

Syntax:

ALTER TRI GGER nane
[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} <action_list>]
[PCSI TI ON nunber]
[AS <trigger_body>]

<action_|ist> = <action> [OR <action> [OR <action>]]
<action> ::= |INSERT | UPDATE | DELETE

Multi-action triggers

Addedin: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
afull discussion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count

Changedin: 1.0

Description: Eachtimeyou use CREATE, ALTER or DROP TRIGGER, | nterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can till work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, alter or drop triggers for that table.

21

DDL statements

COMMENT

Tip

Find amore recent version at Firebird 5.0 Language Reference: Comments

Availablein: DSQL
Addedin: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fieldsin the system tables, from where client applications can pick them up.

Syntax:
COVMENT ON <object> IS {'sonetext' | NULL}

DATABASE

| <basic-type> object nane

| COLUMWN rel ationnane. fiel dnane
| PARAMETER procnane. par anmane

<obj ect >

<basi c-t ype> CHARACTER SET | COLLATION | DOVAI N | EXCEPTI ON
| EXTERNAL FUNCTION | FILTER | GENERATOR | | NDEX

| PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VIEW

Note

If you enter an empty comment (* '), it will end up as NULL in the database.

Examples:
comment on database is 'Here''s where we keep all our customer records.’
conment on table Metals is 'Also for alloys'

coment on columm Metals.IsAlloy is 'O = pure netal, 1 = alloy'

comment on index ix_sales is 'Set inactive during bulk inserts!’

CREATE DATABASE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DATABASE

Availablein: DSQL, ESQL

22

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-comment.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html#fblangref50-ddl-database

DDL statements

Syntax (partial):
CREATE { DATABASE | SCHEMA}
t i?AGE_SI ZE [=] <size>]
tbi FFERENCE FILE 'fil epath']

<size> ::= 1024 | 2048 | 4096 | 8192 | 16384

16 Kb page size supported
Changedin: 1.0

Description: The maximum database page size has been raised from 8192 to 16384 bytes.

DIFFERENCE FILE parameter
Added in: 2.0

Description: For afull description of this parameter, see ALTER DATABASE :: ADD DIFFERENCE FILE.

CREATE DOMAIN

Tip

Find a more recent version at Firebird 5.0 Language Reference: DOMAIN

Availablein: DSQL, ESQL

Context variables as defaults
Changed in: 1B

Description: Any context variable that is assignment-compatible to the new domain's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create donmin DDate as
date
default current _date
not null

CREATE EXCEPTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXCEPTION

23

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-domn.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-exception.html

DDL statements

Availablein: DSQL, ESQL

Message length increased
Changed in: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78to 1021.

Example:

create excepti on Ex_TooManyManagers
'Too many nmanagers: An attenpt was made to create nore managers than the
maxi nrum defined in the Limts table. If you really need to create nore
managers than you have now, raise the linmt first. However, please consult
your departnent''s manager before doing so. O herw se, your decision my
be overturned | ater and the additional manager(s) renoved.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE GENERATOR

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: SEQUENCE (GENERATOR)

Availablein: DSQL, ESQL

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred

Tip

Find amore recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Changedin: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised

Changed in: 1.0

24

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

CREATE INDEX

Tip

Find a more recent version at Firebird 5.0 Language Reference: INDEX

Availablein: DSQL, ESQL
Description: Creates an index on atable for faster searching, sorting and/or grouping.

Syntax:

CREATE [UNI QUE] [ASC] ENDING | [DESC] ENDI NG] | NDEX i ndexnane
ON t abl enane
{ (<col> [, <col>...]) | COWPUTED BY (expression) }

<col> ::= a colum not of type ARRAY, BLOB or COWPUTED BY

UNIQUE indices now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now alowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints
now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unigue keys.

Indexing on expressions

Added in: 2.0

Description: Instead of one or more columns, you can now also specify asingle COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUPBY clause exactly matchesthe expression in theindex definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upname on persons conputed by (upper(nane));
commi t;

-- the following queries will use ix_upnane:

sel ect * from persons order by upper(nane);

select * from persons where upper(nane) starting with ' VAN ;
del ete from persons where upper(nanme) = ' BROM ;

del ete from persons where upper(nane) = 'BROMW and age > 65;

create descendi ng index ix_events_yt

25

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-index.html

DDL statements

on MyEvents
conputed by (extract(year from StartDate) || Town);

comm t;

-- the following query will use ix_events_yt:
select * from WEvents
order by extract(year from StartDate) || Town desc;

Maximum index key length increased

Changed in: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and

character sets.

Table5.1. Maximum indexable (VAR)CHAR length

Page size Maximum indexable string length per charset type

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
1024 247 123 82 61
2048 503 251 167 125
4096 1015 507 338 253
8192 2039 1019 679 509
16384 4087 2043 1362 1021

Maximum number of indices per table increased

Changedin: 1.0.3, 1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a“hard” ceiling, the number of indices creatable in practice is till limited by the
database page size and the number of columns per index, as shown in the table below.

Table5.2. Max. indices per table, Firebird 2.0

Page size Number of indices depending on column count

1 cal 2cols 3cols
1024 50 35 27
2048 101 72 56
4096 203 145 113

26

DDL statements

Page size Number of indices depending on column count

1 cal 2cols 3cols
8192 408 291 227
16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For afull table also including Firebird versions 1.0-1.5, see the Notes at the end of the book.

CREATE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

Availablein: DSQL, ESQL
Changed in: 2.0

Description: It is now possible to provide default values for stored procedure arguments, alowing the caller to
omit one or more items from the end of the argument list.

Syntax:
CREATE PROCEDURE procnane (<inparan® [, <inparam> ...])
<inparank .= paramane datatype [{= | DEFAULT} val ue]

Important: If you give a parameter a default value, all parameters coming after it must also get
default values.

Example:

create procedure TestProc
(aint, bint default 8, s varchar(1l2) ="'")

CREATE SEQUENCE

Tip

Find amore recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Availablein: DSQL

27

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Added in: 2.0

Description: Creates a hew sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

Syntax:

CREATE SEQUENCE sequence- hane
Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. Thisis not recommended however.

Sequences (or generators) are always stored as 64-bit integer values, regardless of the database dial ect. However:

» If theclient dialect isset to 1, the server passes generator values as truncated 32-bit values to the client.

» |If generator valuesarefed into a32-bit field or variable, all goeswell until the actual value exceedsthe 32-bit
range. At that point, adialect 3 database will raise an error whereas adialect 1 database will silently truncate
the value (which could also lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

CREATE TABLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: TABLE

Availablein: DSQL, ESQL

CHECK accepts NULL outcome
Changedin: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 regject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcomeisf al se.

Example:
Checks like these:
check (val ue > 10000)
check (Town like 'Arst %)

check (upper(value) in ("A, "B, "X))

28

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

check (M ni mum <= Maxi mum

all fail in pre-2.0 Firebird versionsif the value to be checked isNULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not nul|” predicates to your
CHECKSsiif they should continue to reject NULL input.

Context variables as column defaults

Changedin: IB

Description: Any context variablethat is assignment-compatible to the column datatype can be used as adefault.
Thiswas aready the casein InterBase 6, but the Language Reference only mentioned USER.

Example:
create table MyData (

idint not null primary key,
record _created timestanp default current_tinestanp,

FOREIGN KEY without target column references PK
Changedin: IB

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the B Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:
create table eik (

a int not null primry key,
b int not null unique

)
create table beuk (
b int references eik

)

-- beuk.b references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changedin: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

29

DDL statements

UNIQUE constraints now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
» Multiple rows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they constituted the entire unique key.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionally define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAI NT const rai nt - nane]
<constrai nt-type> <constraint-definition>

30

DDL statements

[USI NG [ASC] ENDI NG | DESC[ENDI NG] | NDEX i ndex_nane]
Examples:
Thefirst example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table custoners (
custno int not null constraint pk_cust primary key using index ix_custno,

This, however:

create table custoners (
custno int not null primary key using index ix_custno,

...will giveyou aPK constraint called INTEG_7 or something similar, and an index 1X_CUSTNO.
Some more examples:

create table people (
idint not null,
ni cknane varchar(12) not null,
country char (4),

constraint pk_people primary key (id),
constrai nt uk_ni cknane uni que (ni ckname) using index iXx_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc index ix_people_country

I mportant

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keys referencing it descending as well.

CREATE TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

Availablein: DSQL, ESQL

Description: Creates atrigger, i.e. a block of PSQL code that is executed automatically before or after certain
mutations to atable or view.

Syntax:

CREATE TRI GGER nane FOR {table | view}

31

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

[ACTI VE | | NACTI VE]

{BEFORE | AFTER} <action_list>
[PCSI TI ON nunber]

AS

<trigger_body>

<action> [OR <action> [OR <action>]]
| NSERT | UPDATE | DELETE

<action_list>
<action>

Multi-action triggers

Added in: 1.5

Description: Triggers can now be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added
So you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* commron code: */
new. part nane_upper = upper (new. partnane);
end

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

e |f youtry toread their field values, NULL is returned.
< If you try to assign values to them, a runtime exception is thrown.

CREATE TRIGGER no longer increments table change count

Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

32

DDL statements

CREATE VIEW

Tip

Find amore recent version at Firebird 5.0 Language Reference: VIEW

Availablein: DSQL, ESQL

Full SELECT syntax supported

Changedin: 2.0

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements.
Consequently, the following elements are (re)allowed in view definitions. FIRST, SKIP, ROWS, ORDER BY,
PLAN and UNION.

Note

The use of a UNION within a view is currently only supported if you supply a column list for the view (this
list isnormally optional):

create view vpl anes (nake, nodel) as
sel ect make, nodel fromjets
uni on
sel ect make, nodel from props
uni on
sel ect make, nodel fromgliders

In Firebird 2.5, the column list will become optional also for views with UNIONS.

PLAN subclause disallowed in 1.5, reallowed in 2.0

Changedin: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in a view definition. From 2.0 onward
aPLAN isalowed again.

Triggers on updatable views block auto-writethrough

Changedin: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, thismisbehaviour has been corrected: now if you defineatrigger on anaturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.

33

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-view.html

DDL statements

Thisisin accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table
can be made insertable

Changedin: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, all INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger
got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it isinsertable:

create table base (x int not null, y int not null);
create view vbase as select x from base;

set term#;
create trigger bi_base for vbase before insert
as
begi n
if (new.x is null) then new x = 33;
insert into base val ues (new. x, 0);
end#
set term;#

Notes:

» Please notice that the problem described above only occurred for NOT NULL columns that were |eft outside
the view.

e (Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then there was arisk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

CREATE OR ALTER EXCEPTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXCEPTION

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-exception.html

DDL statements

Availablein: DSQL
Added in: 2.0

Description: If the exception does not yet exist, it is created just as if CREATE EXCEPTION were used. If it
aready exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

CREATE OR ALTER PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

Availablein: DSQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
aready exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

CREATE OR ALTER TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

Availablein: DSQL
Addedin: 1.5

Description: If the trigger does not yet exist, it is created just asif CREATE TRIGGER were used. If it already
exigts, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE TRIGGER.

DECLARE EXTERNAL FUNCTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXTERNAL FUNCTION

Availablein: DSQL, ESQL

35

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-extfunc.html

DDL statements

Description: This statement makes an external function (UDF) known to the database.

Syntax:

DECLARE EXTERNAL FUNCTI ON | ocal nane
[<arg_type decl> [, <arg type decl> ...]]
RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]
ENTRY_PO NT ' function_nane' MODULE_NAME 'Iibrary_nange'

sqgl type [BY DESCRI PTOR] | CSTRI NG | engt h)
sqgl type [BY {DESCRI PTOR| VALUE}] | CSTRI NG I engt h)

<arg_type_decl >
<return_type_decl >

Restrictions

e TheBY DESCRIPTOR passing method is not supported in ESQL .

You may choose | ocal nanme fredly; thisis the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the
end of the book).

BY DESCRIPTOR parameter passing

Availablein: DSQL

Added in: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLsin ameaningful way. Notice that this only works if the person who wrote the function

has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work —on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n

Availablein: DSQL, ESQL

Addedin: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“RETURNSPARAMETER

n” clause added —n being the position of said parameter. Thisclause dates back to | nterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Devel oper's Guide though).

DECLARE FILTER

Tip

Find amore recent version at Firebird 5.0 Language Reference: FILTER

Availablein: DSQL, ESQL

36

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-filter.html

DDL statements

Changedin: 2.0
Description: Makes a BLOB filter available to the database.
Syntax:
DECLARE FILTER filtername
I NPUT_TYPE <sub_type> OQUTPUT_TYPE <sub_type>
ENTRY_PO NT ' function_nane' MODULE NAME 'li brary_nane'

<sub_t ype>
<menoni ¢>

nunber | <menoni c>

binary | text | blr | acl | ranges | sumary | fornat
| transaction_description | external file_description
| user _defined

* InFirebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring afilter with an already existing input-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will also fail.

» The possihility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The bi nar y mnemonic for subtype 0 was also added in Firebird 2. The predefined
MNemonics are case-insensitive.

Example:

decl are filter Funnel
i nput _type blr output_type text
entry_point 'blr2asc' nodul e_nanme 'nyfilterlib’

User-defined mnemonics: If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDBS$TY PES system table as shown below. Once committed, the mnemonics can be used in subsequent
filter declarations.

insert into rdb$types (rdb%field_nane, rdb$type, rdb$type_nane)
val ues (' RDB$FI ELD SUB TYPE', -33, 'MD")

Thevauefor r db$f i el d_nane must always be 'RDBSFIELD_SUB_TYPE'. If you define your mnemonicsin
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

DROP GENERATOR

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: SEQUENCE (GENERATOR)

Availablein: DSQL
Added in: 1.0
Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

37

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Syntax:

DROP GENERATOR gener at or - nane

From Firebird 2.0 onward, the SQL -compliant DROP SEQUENCE syntax is preferred.

DROP PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

Availablein: DSQL, ESQL

Restriction on dropping used procedures

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP SEQUENCE

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: SEQUENCE (GENERATOR)

Availablein: DSQL
Added in: 2.0

Description: Removes asequence or generator from the database. Its (very small) storage space will befreed for
re-use after abackup-restore cycle. SEQUENCE isthe SQL-compliant term for what InterBase and Firebird have
always called agenerator. DROP SEQUENCE isfully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.
Syntax:

DROP SEQUENCE sequence- name
Example:

drop sequence seqtest

See also: CREATE SEQUENCE

38

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

DROP TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

Availablein: DSQL, ESQL

Restriction on dropping used triggers

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP TRIGGER no longer increments table change count

Changedin: 1.0
Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated

table when CREATE, ALTER or DROP TRIGGER is used. For afull discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE EXCEPTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXCEPTION

Availablein: DSQL
Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. Thiswilll fail if there are existing dependencies on
the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

39

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-exception.html

DDL statements

RECREATE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

Availablein: DSQL
Added in: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists,
RECREATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if
the existing SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE TABLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: TABLE

Availablein: DSQL
Added in: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will

try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the
existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

RECREATE TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

40

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

Availablein: DSQL
Added in: 2.0

Description: Creates or recreates atrigger. If atrigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger isin use.

Syntax: Exactly the same as CREATE TRIGGER.

Restriction on recreating used triggers

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE VIEW

Tip

Find amore recent version at Firebird 5.0 Language Reference: VIEW

Availablein: DSQL
Addedin: 1.5

Description: Cresates or recreates a view. If aview with the same name aready exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

REVOKE ADMIN OPTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: Statements for Revoking Privileges

Availablein: DSQL
Addedin: 2.0

Description: Revokes apreviously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking theroleitself. Multipleroles and/or multiple grantees can be handled in one statement.

Syntax:

REVOKE ADM N OPTI ON FOR <rol e-list> FROM <grantee-|ist>

41

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-view.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-security-revoking.html

DDL statements

<role-list>
<grantee-list>
<gr ant ee>

role [, role ...]

[USER] <grantee> [, [USER] <grantee> ...]
usernane | PUBLIC

Example:
revoke admin option for manager from john, paul, george, ringo

If auser has received the admin option from severa grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

SET GENERATOR

Tip

Find amore recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Availablein: DSQL, ESQL
Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-
compliant ALTER SEQUENCE syntax is preferred.

Syntax:
SET CGENERATOR gener at or - nane TO <new- val ue>

<newvalue> ::= A 64-bit integer.

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

42

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

Chapter 6

DML statements

Tip

Find amore recent version at Firebird 5.0 Language Reference: Data Manipulation (DML) Statements

DELETE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DELETE

Availablein: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE
[TRANSACTI ON nane]
FROM {t abl ename | viewnane} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort _itens]
[ROA5 <nP [TO <n>]]

<m>, <n> ::= Any expression evaluating to an integer.

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

e ThePLAN, ORDER BY and ROWS clauses are not availablein ESQL.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

del ete from MyTabl e

43

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-delete.html

DML statements

where NaneBl ob collate pt_br = 'Joao

ORDER BY
Availablein: DSQL, PSQL
Added in: 2.0

Description: DELETE now alows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: DELETE now allows a PLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
delete fromCities where nanme starting 'Al ex'
delete fromCities where GCties.nane starting 'Al ex'
delete fromCities C where nanme starting 'Al ex'
delete fromCities C where C name starting 'Al ex'

No longer possible:

delete fromCities C where Cities.nane starting 'Al ex'

ROWS
Availablein: DSQL, PSQL
Addedin: 2.0

Description: Limits the amount of rows deleted to a specified number or range.

44

DML statements

Syntax:
ROWNE <> [TO <n>]
<m>, <n> .= Any expression evaluating to an integer.

With a single argument m the deletion is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

« |f m> thetotal number of rowsin the dataset, the entire set is del eted.

e |f m=0, no rows are del eted.

e If m<O, anerror israised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

e |f m> thetotal number of rows in the dataset, no rows are deleted.

« |If mlieswithin the set but n doesn't, the rows from mto the end of the set are del eted.

e |fm<lorn<1,anerrorisraised.

e If n=ml, norows are deleted.

e |fn<ml, anerrorisraised.

ROWS can also be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXECUTE BLOCK

Availablein: DSQL
Added in: 2.0

Description: Executes a block of PSQL code as if it were a stored procedure, optionally with input and output
parameters and variable declarations. Thisallowsthe user to perform * on-the-fly” PSQL withinaDSQL context.

Syntax:

EXECUTE BLOCK [(<i nparans>)]
[RETURNS (<out par ans>) |

AS
[<decl arati ons>]
BEA N
[<PSQL st at ement s>]
END
<i npar ans> ::= paramane type = ? [, <inparans>]

45

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execblock.html

DML statements

<out par ans>
<decl arati ons>

paramane type [, <outparans>]
See PSQL:: DECLARE for the exact syntax

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begin
insert into AsciiTable values (:i, ascii_char(:i));
i =i + 1
end
end

The next example cal cul ates the geometric mean of two numbers and returnsiit to the user:

execute block (x double precision = ?, y double precision = ?)
returns (gnean doubl e precision)
as
begi n
gnean = sqrt(x*y);
suspend;
end

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all — see the notes below.

Our last exampletakestwo integer values, snal | est andl ar gest . For al thenumbersintherange
smal | est ..| ar gest , the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (nunber int, square bigint, cube bigint, fourth bigint)
as
begi n
nunber = snmal | est;
whil e (nunber <= largest) do

begi n
square = nunber * nunber
cube = nunber * square;
fourth = nunber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client software if and how you can set the parameter values.
Notes:

» Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

46

DML statements

set term#;
execute block (...)
as
begi n
st at enent 1;
st at enent 2;
end
#
set term ;#

In Firebird's isgl client you must set the terminator to something other than “; ” before you type in the
EXECUTEBLOCK statement. Otherwiseisgl, being line-oriented, will try to execute the part you have entered
as soon as it encounters the first semicolon.

Executing ablock without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but beforeit is executed. Thisrequires special provisions,
which not every client application offers. (Firebird's own isgl, for one, doesn't.)

The server only accepts question marks (“?”) as placeholders for the input values, not “: a”, “: MyPar anf
etc., or literal values. Client software may support the “: xxx” form though, which it will preprocess before
sending it to the server.

If the block has output parameters, you must use SUSPEND or hothing will be returned.

Output is aways returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

EXECUTE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL

Changedin: 1.5

Description: Executes astored procedure. In Firebird 1.0.x aswell asin InterBase, any input parameters for the
SP must be supplied as literals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE pr ocnarme
[TRANSACTI ON transacti on]
[<in_item [, <in_item> ...]]
[RETURNI NG_VALUES <out_item> [, <out_itenmr ...]]

<in_itenmp = <inparanm®> [<nullind>]

<out _itenr = <outvar> [<nullind>]

<i npar an> = an expression evaluating to the decl ared paraneter type

<out var > = a host | anguage or PSQ. variable to receive the return val ue

47

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html

DML statements

<nul I'i nd> ::= [NDI CATOR] : host _I ang_i ntvar

Notes
e TRANSACTION clauses are not supported in PSQL .
» Expression parameters are not supported in static ESQL, and not in Firebird versionsbelow 1.5.

e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

« In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:”). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
Examples: NEW.

In PSQL (with optional colons):
execut e procedure MakeFul | Name

:FirstNanme, : M ddl eNane, :LastNane
returni ng_val ues : Ful | Nane;

The same call in ESQL (with obligatory colons):
exec sql
execut e procedure MakeFul | Name

: FirstName, : M ddl eNane, :LastNane
returning_val ues : Ful | Nane;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Name
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:
execut e procedure MakeFul | Name

"M./Ms. ' || FirstName, M ddl eNane, upper (Last Nane)
returning_val ues Ful | Nane;

INSERT

Tip

Find amore recent version at Firebird 5.0 Language Reference: INSERT

Availablein: DSQL, ESQL, PSQL
Changedin: 2.0

Description: Addsrowsto adatabasetable, or to one or moretablesunderlying aview. Field values can be given
in the VALUES clause (in which case exactly one row is inserted) or they can come from a SELECT statement.

48

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-insert.html

DML statements

Syntax:

| NSERT [TRANSACTI ON nane]
I NTO {tabl ename | viewnane} [(<colums>)]
{VALUES (<val ues>) [RETURNI NG <val ues> [| NTO <vari abl es>]]
| <sel ect _expr>}

<col ums> = colname [, colname ...]
<val ues> = value [, value o]
<vari abl es> = :varname [, :varname ...]

<sel ect _expr> a SELECT returning a set whose colums fit the target

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

The RETURNING clauseis not available in ESQL.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

The trigger context variables OLD and NEW must not be preceded by acolon (“: ™).
New in 2.0: No column may appear more than once in the insert list.

RETURNING clause
Availablein: DSQL, PSQL
Added in: 2.0

Description: An“INSERT ... VALUES’ query may optionally specify aRETURNING clausein order to return the
valuesthat have actually been stored. The clause, if present, need not contain all of the insert columns and may
also contain other columns or expressions. The returned values reflect any changes that may have been made
in BEFORE tiggers, but not those in AFTER triggers.

Example:
insert into Scholars (firstnanme, |astname, address, phone, emil)
values ('Henry', '"Higgins', '27A Wnpole Street', '3231212', null)

returning |astname, fullname, id

Note: In Firebird 2.0, the RETURNING clause is only supported for “INSERT ... VALUES" queries. With
“INSERT ... SELECT” itisrejected, even if it concerns asingleton select. Thislimitation will belifted in version
2.1

UNION allowed in feeding SELECT
Changed in: 2.0
Description: A SELECT query used in an INSERT statement may now be a UNION.

Example:

insert into Menbers (number, nane)
sel ect nunber, name from NewMenbers where Accepted =1
uni on
sel ect nunber, name from SuspendedMenbers where Vindicated = 1

49

DML statements

SELECT

Tip

Find amore recent version at Firebird 5.0 Language Reference: SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5

Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They
will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up alow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nane as "Tabl e nane",
(select max(i.rdb$statistics) || ' (" || count(*) |] ")

fromrdb$relation fields rf
where rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r
join rdb$indices i on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by r.rdb$rel ati on_nane
having max(i.rdb$statistics) > 0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

Since Firebird 1.5 it is possible to use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

50

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html#fblangref50-dml-select

DML statements

Examples:

This query returns each table's ID and field count. The subquery refers to flds.rdb
$rel ati on_nane, whichisalso a GROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$rel ations rels
where rels.rdb$rel ati on_name = flds.rdb$rel ati on_nane
) as "ID',
count (*) as "Fields"
fromrdb$rel ation_fields flds
group by flds.rdb$rel ati on_nane

The next query showsthe last field from each table and and its 1-based position. It uses the aggregate
function MAX in asubquery.

sel ect
flds.rdb$rel ati on_nane as "Tabl e"
(select flds2.rdb%field name
fromrdb$rel ation_fields flds2
wher e
flds2.rdb$rel ati on_nane = flds. rdb$rel ati on_nane
and flds2.rdb$field position = max(flds.rdb$field position)
) as "Last field",
max(flds.rdb$field_position) + 1 as "Last fiel dpos"
fromrdb$rel ation_fields flds
group by 1

The subquery also contains the GROUP BY item fl ds. rdb$rel ati on_nane, but that's not
immediately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions
Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.
Example:

sel ect
r.rdb$rel ati on_name as "Tabl e",
sun((select count(*)
fromrdb$relation fields rf
where rf.rdb$rel ati on_nane = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
join rdb$indi ces
on (i.rdb$relation_name = r.rdb$rel ati on_nane)
group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from alower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is till forbidden and
punishable by exception.

51

DML statements

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it is only accepted if one of the following is true:

» The column name appearsin an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || 1"

or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUPBY list.

[AS] before relation alias

Added in: IB

Description: The keyword AS can optionally be placed before arelation alias, just asit can be placed before a
column alias. Thisfeature dates back to InterBase times, but wasn't documented in the IB Language Reference.

Syntax:

SELECT ... FROM <rel ation> [AS] alias

<relation> ::= A table, view, or selectable SP
Examples:

sel ect order_no, total, fullname
fromorders as o join custonmers as ¢ on o.cust_id = c.cust_id

sel ect order_no, total, fullname
fromorders o join custoners ¢ on o.cust_id = c.cust _id

The two queries are fully equivalent.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

sel ect NaneBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao'

52

DML statements

Derived tables (* SELECT FROM SELECT")

Added in: 2.0

Description: A derived tableistheresult set of aSELECT query, used in an outer SELECT asif it werean ordinary
table. In other words, it is a subquery in the FROM clause.

Syntax:

(sel ect-query)
[[AS] derived-table-alias]
[(<derived-col um-al i ases>)]

<derived-colum-aliases> := colum-alias [, colum-alias ...]
Examples:

The derived table in the query below (shown in boldface) contains al the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

sel ect fieldcount,
count (relation) as numtables

from (select r.rdb$relation_nanme as relation

count (*) as fieldcount

from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$rel ati on_name = r.rdb$rel ati on_nane
group by relation)

group by fiel dcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

sel ect dbi nfo. descr,
dbi nf 0. def _char set
from (select * fromrdb$database) dbinfo
(descr, rel _id, sec_class, def_charset)

Notes:
» Derived tables can be nested.

» Derived tables can be unions and can be used in unions. They can contain aggregate functions, subsel ects and
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
gueries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

» Every columninaderived table must have aname. If it doesn't have one by nature (e.g. becauseit'saconstant)
it must either be given an alias in the usual way, or a column aiases list must be added to the derived table
specification.

* Thecolumn aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

53

DML statements

» The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP

Availablein: DSQL, PSQL
Added in: 1.0

Changed in: 1.5

Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL -compliant ROWS syntax instead.

Syntax:
SELECT [FI RST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<int-expr> ::= Any expression evaluating to an integer.
<col ums> = The usual output col um specifications.

Note

If <i nt - expr >isaninteger literal or aquery parameter, the“() ” may be omitted. Subselects on
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmast rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP O is alowed, but of course rather pointless. FIRST O is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) isless than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the People table:

select first 10 id, nanme from Peopl e
order by nane asc

The following query will return everything but the first 10 names.

sel ect skip 10 id, name from Peopl e

DML statements

order by nane asc

And this one returns the last 10 rows. Notice the doubl e parentheses:
sel ect skip ((select count(*) - 10 from People))

id, name from Peopl e
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nane from Peopl e
order by nane asc

Two Gotchaswith FIRST in subselects
e This:
delete from MyTabl e where IDin (select first 10 ID from MyTabl e)

will deleteall of therowsinthetable. Ouch! The sub-select isevaluating each 10 candidate rowsfor deletion,
deleting them, dlipping forward 10 more... ad infinitum, until there are no rows left. Beware! Or better: use
the ROWS syntax, available since Firebird 2.0.

e Querieslike:
...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obvious that in this case FIRST N doesn't make any sense:

...where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLs in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of
to the dataset as awhole.

Syntax:

SELECT ... FROM...
CGROUP BY <itenmr [, <itenk ...]

<item> ::= colum-nanme [COLLATE coll ati on-nane]
| colum-alias
| col um-position
| expression

* Only non-negative integer literals will be interpreted as column positions. If they are outside the
rangefrom 1 to the number of columns, an error israised. Integer valuesresulting from expressions
or parameter substitutions are simply invariables and will be used as such in the grouping. They
will have no effect though, as their value is the same for each row.

55

DML statements

* A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

» Theselect list may not contain expressions that can have different values within agroup. To avoid
this, the rule of thumb isto include each non-aggregate item from the select list in the GROUPBY
list (whether by copying, aias or position).

Note: If you group by a column pasition, the expression at that position is copied internally from the select list.
If it concerns a subquery, that subquery will be executed at |east twice.

Grouping by alias, position and expressions
Changedin: 1.0, 1.5, 2.0

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUPBY items.

Examples:

These three queries all achieve the same result:

sel ect strlen(lastnane) as | en_name, count(*)
from peopl e
group by | en_name

select strlen(lastnane) as |en_nane, count(*)
from peopl e
group by 1

sel ect strlen(lastnane) as | en_nane, count(*)

from peopl e
group by strlen(l astnane)

History: Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE outcomes and

alimited number of internal functionsin Firebird 1.5. Firebird 2 added column aliases and expressionsin general
asvalid GROUPBY items (“expressionsin general” absorbing the UDF, CASE and interna functions lot).

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected
Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

56

DML statements

sel ect buses. nanme, garages. hane
from buses join garages on buses.garage_id = garage.id
where name = ' Phideaux |11’

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

CROSS JOIN
Added in: 2.0
Description: Firebird 2.0 supports CROSS JOIN, which performsafull set multiplication on the tables involved.

Previously you had to achieve this by joining on a tautology (a condition that is always true) or by using the
comma syntax, now deprecated.

Syntax:
SELECT ...
FROM t abl el CROSS JO N t abl e2

[WHERE . . .]

Note: If you use CROSS JOIN, you can't use ON.
Example:

select * from Men cross join Wnen
order by Men.age, Wnen. age

-- old syntax:

- - select * fromMen join Wonen on 1 =1
-- order by Men. age, Wonen. age

-- conma synt ax:

- - select * from Men, Wnen
-- order by Men. age, Wonen. age

ORDER BY
Syntax:
SELECT ... FROM...
d?i:)ER BY <ordering-item> [, <ordering-item> ...]
<ordering-iten> ::= {col-nane | col-alias | col-position | expression}

[COLLATE col | ati on- nane]

[ASCI ENDI NG| | DESC] ENDI NG]
[NULLS { FI RST| LAST}]

Order by colum alias

Added in: 2.0

57

DML statements

Description: Firebird 2.0 and above support ordering by column alias.
Example:
sel ect rdb$character_set _id as charset _id,
rdb$col l ation_id as coll _id,
rdb$col | ati on_nane as name

fromrdb$col | ati ons
order by charset _id, coll _id

Ordering by column position causes * expansion
Changedin: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:
The following wasn't possible in pre-2.0 versions:

select * fromrdb$coll ations
order by 3, 2

The following would sort the output set on Fi | ns. Di r ect or in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

sel ect Books.*, Filns.Director from Books, Filns
order by 2

Ordering by expressions
Addedin: 1.5

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that
expressions consisting of a single non-negative whole number will beinterpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note fromPairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

» Thenumber of function or procedureinvocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

58

DML statements

* Only non-negative whole number literalsareinterpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, sinceits value is the same for each row.

NULLs placement
Changedin: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULL s appear in the sorted column. Firebird 2.0 has changed the default placement of NULLSs.

Unless overridden by NULLS FIRST or NULLS LAST, NULLsin ordered columns are placed as follows:
» InFirebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.
» InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table 6.1. NULLs placement in ordered columns

Ordering NULLs placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asC] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nullsfirst — top top
order by Field [asc | desc] nulls last — bottom bottom
Notes

¢ Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering
behaviour under Firebird 2.0 and up.

* No index will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5,
that is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST
on descending sorts.

Examples:

select * from nsg
order by process_tinme desc nulls first

select * from docunent
order by strlen(description) desc
rows 10

sel ect doc_nunber, doc_date from payorder
uni on all
sel ect doc_nunber, doc_date from budgorder

59

DML statements

order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements
Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN
Availablein: DSQL, ESQL, PSQL

Description: Specifies a user plan for the data retrieval, overriding the plan that the optimizer would have
generated automatically.

Syntax:
PLAN <pl an_expr>
<pl an_expr> i:= [JON]| [SORT] [MERGE]] (<plan_itenmr [, <plan_itenr ...])
<plan_itene ::= <basic_itenm> | <plan_expr>

<basic_itenr {table | alias}
{ NATURAL
| I NDEX (<indexlist>))

| ORDER index [INDEX (<indexlist>)]}

<i ndexl i st > index [, index ...]

Handling of user PLANs improved

Changedin: 2.0

Description: Firbird 2 has implemented the following improvements in the handling of user-specified PLANS:
» Planfragmentsare propagated to nested levels of joins, enabling manual optimization of complex outer joins.
» User-supplied planswill be checked for correctnessin outer joins.

 Short-circuit optimization for user-supplied plans has been added.

* A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changedin: 2.0

Description: A single plan item can now contain both an ORDER and an INDEX directive (in that order).
Example:

plan (MyTabl e order ix_nyfield index (ix_this, ix_that))

60

DML statements

PLAN must include all tables

Changedin: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but thisis no longer the case.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
sel ect pears from Fruit
sel ect Fruit.pears fromFruit
sel ect pears fromFruit F
sel ect F.pears fromFruit F
No longer possible:

select Fruit.pears fromFruit F

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.
Syntax:

With asingle SELECT:

SELECT <col ums> FROM . ..

[WHERE . ..]

[ORDER BY . ..]
ROAS <m> [TO <n>]

<col ums> = The usual output colum specifications.
<mp, <n> = Any expression evaluating to an integer.
With a UNION:

SELECT [FIRST p] [SKIP g] <colums> FROM ... [WHERE ...]

61

DML statements

UNION [ALL | DI STI NCT]

SELECT [FIRST r] [SKIP s] <colums> FROM ... [WHERE ...]
[ORDER BY .. .]

ROA5 <> [TO <n>]

With asingle argument m the first mrows of the dataset are returned.
Points to note:

« |f m> thetotal number of rows in the dataset, the entire set is returned.
e If m=0, an empty set is returned.
e |If m<O, anerror israised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are 1-based.
Points to note when using two arguments:

» If m> thetotal number of rows in the dataset, an empty set is returned.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e Ifm<lorn<1, anerrorisraised.

* If n =m1l, an empty set isreturned.

e If n<ml, anerror israised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returnsthe entire remainder of the set after skipping agiven number of rows. (Y ou can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rowsin the set.)

Y ou cannot use ROWS together with FIRST and/or SKIP in asingle SELECT statement, but isit valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after the
last SELECT. If you want to limit the output of one or more individual SELECTswithinthe UNION, you havetwo
options: either use FIRST/SKIP on those SELECT statements (probably of limited use, as you can't use ORDER
BY on individual selects within aunion), or convert them to derived tables with ROWS clauses.

ROWS can also be used with the UPDATE and DELETE statements.

UNION

Availablein: DSQL, ESQL, PSQL

UNIONS in subqueries
Changedin: 2.0

Description: UNIONs are now alowed in subqueries. This applies not only to column-level subqueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

sel ect name, phone, hourly_rate from cl owns
where hourly rate < all
(select hourly rate fromjugglers
uni on

62

DML statements

sel ect hourly rate from acrobats)
order by hourly rate

UNION DISTINCT
Added in: 2.0

Description: Y ou can now usetheoptional DISTINCT keyword when defining aUNION. Thiswill show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax:
SELECT (...) FROM (...)

UNI ON [DI STINCT | ALL]
SELECT (...) FROM(...)

Example:
sel ect nanme, phone fromtranslators

uni on di stinct
sel ect nanme, phone from proofreaders

Translators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the samein both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

WITH LOCK
Availablein: DSQL, PSQL
Addedin: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

Itisessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM ssingle_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

63

DML statements

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-leve, single-table SELECT statement. It is not available:

* inasubquery specification;

o forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
* withaview;

» with the output of a selectable stored procedure;

» with an externa table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Tip

Find amore recent version at Firebird 5.0 Language Reference: UPDATE

Availablein: DSQL, ESQL, PSQL

Description: Changes valuesin atable (or in one or more tables underlying a view). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTI ON nane] {tabl enanme | viewnane} [[AS] alias]
SET col = newal [, col = newal ...]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort_itens]
[ROAE <nk [TO <n>]]

<mP, <n> ::= Any expression evaluating to an integer.

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

e ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

¢ New in 2.0: No column may be SET more than once in the same UPDATE statement.

COLLATE subclause for text BLOB columns

Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.

64

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-update.html

DML statements

Example:

update MyTabl e
set NanmeBl obSp = ' Juan’
wher e NareBl obBr collate pt_br = 'Joao'

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: UPDATE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: UPDATE now allowsaPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang where ...
update Fruit F set soort = 'pisang' where ...
update Fruit F set F.soort = 'pisang' where ...

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ...

ROWS
Availablein: DSQL, PSQL

Added in: 2.0

65

DML statements

Description: Limits the amount of rows updated to a specified number or range.
Syntax:

ROWS <mp [TO <n>]

<m>, <n> .= Any expression evaluating to an integer.

With a single argument m the update is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

» If m> thetotal number of rowsin the dataset, the entire set is updated.
* If m=0, no rows are updated.
* If m<O, an error israised.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are updated.

» If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
e Ifm<lorn<1,anerorisraised.

e If n =m1, no rows are updated.

e If n<ml, anerrorisraised.

ROWS can aso be used with the SELECT and DELETE statements.

66

Chapter 7

Transaction
control statements

Tip

Find amore recent version at Firebird 5.0 Language Reference: Transaction Control

RELEASE SAVEPOINT

Tip

Find amore recent version at Firebird 5.0 Language Reference: REL EASE SAVEPOINT

Availablein: DSQL

Added in: 1.5

Description: Deletes a named savepoint, freeing up all the resourcesit binds.
Syntax:

RELEASE SAVEPO NT nane [ONLY]

Unless ONLY is added, al the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK

Tip

Find amore recent version at Firebird 5.0 Language Reference: ROLLBACK

Availablein: DSQL, ESQL
Syntax:

ROLLBACK [WORK]
[TRANSACTI ON tr_nane]

67

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-releasesp
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-rollback

Transaction control statements

[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_nane | RELEASE]
* The TRANSACTION clauseisonly availablein ESQL.
» The RELEASE clauseisonly availablein ESQL, and is discouraged.

e RETAIN and TO are only availablein DSQL.

ROLLBACK RETAIN
Availablein: DSQL
Addedin: 2.0

Description: Undoes al the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAI N [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it wasthroughthe API call i sc_rol | back_retai ni ng().

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Added in: 1.5
Description: Undoes everything that happened in a transaction since the creation of the savepoint.
Syntax:
ROLLBACK [WORK] TO [SAVEPO NT] name
ROLLBACK TO SAVEPOINT performs the following operations:

» All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDBSSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

» Allimplicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

For afull discussion of savepoints, see SAVEPOINT.

68

Transaction control statements

SAVEPOINT

Tip

Find amore recent version at Firebird 5.0 Language Reference: SAVEPOINT

Availablein: DSQL
Addedin: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions’.

Syntax:
SAVEPO NT <nane>

<nane> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists aready within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPO NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDBSSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested accessto rowslocked after the savepoint must continue to wait until the transaction iscommitted or
rolled back. Other transactions that have not already requested the rows can regquest and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can del ete the savepoint and free the resources it uses with:

RELEASE SAVEPO NT nane [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);

69

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-savepoint

Transaction control statements

commi t;

insert into test values (1);
commi t;

insert into test values (2);
savepoint y;

delete fromtest;

select * fromtest; -- returns no rows
rol I back to v;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue a ROLLBACK statement, al changes performed in this transaction are backed out via a
transaction-level savepoint and the transaction is then committed. This logic reduces the amount of garbage
collection caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine releases the transaction-level savepoint and uses the TIP mechanism to roll back the
transaction if needed.

Tip

If you expect the volume of changesin your transaction to be large, you can specify the NO AUTO UNDO option
inyour SET TRANSACTION statement, or —if you usethe APl —set the TPB flagi sc_t pb_no_aut o_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

» undo dl actionsin aBEGIN...END block where an exception occurs;

» undo al actions performed by the SP/trigger (or, in the case of a selectable SP, al actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is also bounded by automatic system savepaints.

SET TRANSACTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: SET TRANSACTION

Availablein: DSQL, ESQL

70

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-settransac

Transaction control statements

Changedin: 2.0
Description: Starts and optionally configures a transaction.
Syntax:

SET TRANSACTI ON
[NAME host var]
[READ VRI TE | READ ONLY]
[[1SOLATI ON LEVEL] { SNAPSHOT [TABLE STABI LI TY]
| READ COW TTED [[NO RECORD VERSI ON] }]
[WAIT | NO WAIT]
[LOCK TI MEQUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBO
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<t abl es> ;.= <table_spec> [, <table_spec> ...]

<t abl e_spec> tabl ename [, tablenane ...]

[FOR [SHARED | PROTECTED] {READ | WRI TE}]

dbhandl e [, dbhandle ...]

<dbhandl| es>

» The NAME option is only available in ESQL. It must be followed by a previously declared and
initialized host-language variable. Without NAME, SET TRANSACTION applies to the default
transaction.

» The USING optionisaso ESQL-only. It limits the databases that the transaction can access to the
ones mentioned here.

* IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.
e LOCK TIMEOUT and NO WAIT are mutually exclusive.

» Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO
Availablein: DSQL
Addedin: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfacesthei sc_t pb_i gnor e_| i mbo TPB parameter, availableinthe API since InterBase
times and mainly used by gfix.

LOCK TIMEOUT

Availablein: DSQL

71

Transaction control statements

Added in: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when alock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

This is a brand new feature in Firebird 2. Its APl equivalent is the new i sc_t pb_| ock_ti meout TPB
parameter.

NO AUTO UNDO
Availablein: DSQL, ESQL
Added in: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changesin the event of arollback. Should the transaction be rolled back after all, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

Note

NO AUTO UNDO is the SQL equivalent of thei sc_t pb_no_aut o_undo TPB parameter, available in the
API since InterBase times.

72

Chapter 8

PSQL statements

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: Procedural SQL (PSQL) Statements

PSQL — Procedural SQL - is the Firebird programming language used in stored procedures, triggers and
executable blocks.

BEGIN ... END blocks may be empty

Tip

Find amore recent version at Firebird 5.0 Language Reference: BEGIN ... END

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

BREAK

Tip

Find amore recent version at Firebird 5.0 Language Reference: BREAK

Availablein: PSQL
Addedin: 1.0

Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

73

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-beginend
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-break

PSQL statements

Example:

create procedure sel phrase(numint)
returns (phrase varchar (40))

as
begi n
for select Phr from Phrases into phrase do
begi n
if (num< 1) then break
suspend;
num = num - 1;
end
phrase = '*** Ready! ***';
suspend;
end

This selectable SP returns at most numrows from the table Phrases. The variable numis decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at theline“phrase = ' *** Ready! ***';",

I mportant

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor

Tip

Find amore recent version at Firebird 5.0 Language Reference: CL OSE

Availablein: PSQL
Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:
CLCSE cur sor nane;

Example: See DECLARE ... CURSOR.

DECLARE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DECLARE VARIABLE

74

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-close
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-declare-variable

PSQL statements

Availablein: PSQL

DECLARE ... CURSOR

Tip

Find amore recent version at Firebird 5.0 Language Reference: DECLARE .. CURSOR

Added in: 2.0

Description: Declaresanamed cursor and bindsit to its own SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and del etes (using WHERE CURRENT OF) are
also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Syntax:
DECLARE [VARI ABLE] cursornane CURSOR FOR (sel ect-statenent);
Example:

execut e bl ock
returns (relation char(31), sysflag int)
as
decl are cur cursor for
(sel ect rdb$rel ati on_nane, rdb$systemflag fromrdb$rel ations);
begi n
open cur;
while (1=1) do
begi n
fetch cur into relation, sysflag;
if (row_count = 0) then |eave;
suspend;
end
cl ose cur;
end

Notes:

* A “FOR UPDATE" clauseis alowed in the SELECT statement, but not required for a positioned update or
delete to succeed.

» Make surethat declared cursor names do not clash with any names defined later onin AS CURSOR clauses.

» If you need a cursor to loop through an output set, it is almost always easier — and less error-prone — to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check r ow_count after every fetch and break out of the loop
if it is zero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and allow you to operate several cursorsin parallel.

» The SELECT statement may contain named SQL parameters, likein “sel ect name || :sfx from
names where nunber = :nuni. Each parameter must be a PSQL variable that has been declared
previoudly (thisincludes any in/out params of the PSQL module). When the cursor is opened, the parameter
is assigned the current value of the variable.

75

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-declare-cursor

PSQL statements

Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query
plan, in particular the use of indices. As it is currently not strictly defined, it may change in some future
version of Firebird.

See also: OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization

Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional .

Syntax:

DECLARE [VARI ABLE] varnane datatype [{= | DEFAULT} val ue];

Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
declare variable s int;
declare variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

EXCEPTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXCEPTION

Availablein: PSQL

Changedin: 1.5

Description: The EXCEPTION syntax has been extended so that the user can

a Rethrow acaught exception or error.

b.

Provide a custom message when throwing a user-defined exception.

76

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-handleexceptions.html#fblangref50-psql-exception

PSQL statements

Syntax:
EXCEPTI ON [<excepti on- nane> [cust om nessage] |

<exception-name> ::= A previously defined exception nane

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the
EXCEPTION command without any arguments. Outside such blocks, this“bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqlcode, ...);
exception;
end

This example first logs some information about the exception or error, and then rethrows it.

Providing a custom error message

Firebird 1.5 and up allow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:
exception ex_data error 'You just |ost sone val uable data';

exception ex_bad _type 'Wong type for record with id "' || new.id;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

Availablein: DSQL, PSQL
Changedin: 1.5

Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored
procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

77

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html

PSQL statements

EXECUTE STATEMENT

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE STATEMENT

Availablein: PSQL
Addedin: 1.5
Description: EXECUTE STATEMENT takes asingle string argument and executesit asif it had been submitted as

aDSQL statement. The exact syntax depends on the number of datarowsthat the supplied statement may return.

No data returned

Thisform isused with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax:

EXECUTE STATEMENT <st at enent >

<statenment> ::= An SQ statenent returning no data.
Example:

create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variable stnt varchar(1024);

decl are variable paramint;

begi n
sel ect m n(SoneField) from SoneTabl e into param
stm = 'execute procedure '
Pr ocNane

cast (param as varchar (20))
1])l ;

execute statenent stnt;
end

N
I
N
I

Warning

Although thisform of EXECUTE STATEMENT can al so be used with all kinds of DDL strings (except CREATE/
DROP DATABASE), it is generally very, very unwise to use this trick in order to circumvent the no-DDL rule
in PSQL.

One row of data returned

Thisform is used with singleton SELECT statements.

78

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-execstmt

PSQL statements

Syntax:

EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]

<select-statenent> ::= An SQ statenent returning at nost one row of data.
<var > = A PSQ variable, optionally preceded by “:”
Example:
create procedure Dynani cSanpl eTwo (Tabl eNane var char (100))
as
decl are variable paramint;
begi n
execut e statenent
'sel ect max(CheckField) from' || Tabl eNane into :param
if (param > 100) then
exception Ex_Overflow 'Overflow in ' || Tabl eNane;
end

Any number of data rows returned

Thisform — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <sel ect-statenent> | NTO <var> [, <var> ...]
DO <conpound- st at enent >

<sel ect - st at enent >
<var >

Any SELECT st atenent.
A PSQ. variable, optionally preceded by “:”

Example:

create procedure Dynani cSanpl eThree
(TextField varchar(100),
Tabl eNane var char (100))

returns
(LongLi ne varchar (32000))
as
decl are vari abl e Chunk varchar(100);
begi n
Chunk = '"';
for execute statenent
"select ' || TextField || ' from' || TableNane into : Chunk
do

if (Chunk is not null) then
LongLi ne = LongLine || Chunk || ' ';
suspend;
end

Caveats with EXECUTE STATEMENT

1. Thereisno way to validate the syntax of the enclosed statement.

79

PSQL statements

2. There are no dependency checks to discover whether tables or columns have been dropped.
3. Operations will be slow because the embedded statement has to be prepared every time it is executed.

4. The argument string cannot contain any parameters. All variable substitution into the static part of the
DSQL statement should be performed before EXECUTE STATEMENT is called.

5. Returnvauesarestrictly checked for datatypein order to avoid unpredictable type-casting exceptions. For
example, thestring' 1234" would convert to an integer, 1234, but ' abc' would give aconversion error.

6. The submitted DSQL statement is always executed with the privileges of the current user. Privileges
granted to the trigger or SP that contains the EXECUTE STATEMENT statement are not in effect while the
DSQL statement runs.

All in al, thisfeature isintended only for very cautious use and you should always take the above factorsinto

account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FETCH cursor

Tip

Find amore recent version at Firebird 5.0 Language Reference: FETCH

Availablein: PSQL
Added in: 2.0
Description: Fetchesthe next datarow from acursor'sresult set and storesthe column valuesin PSQL variables.
Syntax:
FETCH cursornanme INTO [:]varnanme [, [:]varname ...];

Notes:

80

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-exit
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-fetch

PSQL statements

» The ROW COUNT context variable will be 1 if the fetch returned a data row and O if the end of the set has
been reached.

* You can do apositioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Tip

Find amore recent version at Firebird 5.0 Language Reference: FOR EXECUTE STATEMENT

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Tip

Find a more recent version at Firebird 5.0 Language Reference: FOR SELECT

Availablein: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:

FOR <sel ect-stnt>
I NTO <var> [, <var> ...]
[AS CURSOR nane]

DO
<psqgl -stnt>

<sel ect-stnt>
<var >
<psql -stnt>

A valid SELECT statenent.
A PSQ. variabl e nane, optionally preceded by “:”
A single statement or a block of PSQ code.

» The SELECT statement may contain named SQL parameters, likein“sel ect name || :sfx
from nanes where nunber = : nuni. Each parameter must be a PSQL variable that has
been declared previoudly (this includes any in/out params of the PSQL module).

» Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not aways) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code

81

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forexec
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forselect

PSQL statements

thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. Asitiscurrently
not strictly defined, it may change in some future version of Firebird.

Examples:

create procedure shownums
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnunbers order by a, b
into :aa, :bb

do
begi n
sm = aa + bb
df = aa - bb;
suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$relation_nane fromrdb$rel ations
into :relation
do
begi n
for select rdb$field position + 1, rdb$field _nane
fromrdb$rel ation_fields
where rdb$rel ation_nane = :relation
order by rdb$field_position
into :pos, :field
do
begi n
if (pos = 2) then relation ="' "'; -- for nicer output
suspend;
end
end
end

AS CURSOR clause
Availablein: PSQL
Addedin: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) within the FOR SELECT loop in order to update or delete the current row. Thisfeature was already
added in InterBase, but not mentioned in the Language Reference.

Example:
create procedure deltown (towntodel ete varchar(24))

returns (town varchar(24), pop int)
as

82

PSQL statements

begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begin
if (town = towntodel ete)
then delete fromtowns where current of tcur;
el se suspend;
end
end

Notes:

* A “FOR UPDATE" clauseis allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make sure that cursor names defined here do not clash with any names created earlier on in DECLARE
CURSOR statements.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

LEAVE

Tip

Find amore recent version at Firebird 5.0 Language Reference: LEAVE

Availablein: PSQL
Added in: 1.5
Changedin: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional | abel
argument introduced in Firebird 2.0, LEAVE can break out of surrounding loops as well. Execution continues
with the first statement after the outermost terminated loop.

Syntax:

[l abel :]
{FOR| WHILE} ... DO

(possibly nested |l oops, with or wthout I|abels)

i_iEAVE [l abel];
Example:

If an error occurs during the insert in the example bel ow, the event islogged and the loop terminated.
The program continues at the line of codereading“c = 0;”

while (b < 10) do
begi n
insert into Nunmbers(B) values (:b);

83

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-leave

PSQL statements

b=Db+ 1;
when any do
begin
execute procedure log_error (current_tinestanp, 'Error in B loop');
| eave;
end
end
c =0;

The next example uses labels. “Leave LoopA’ terminates the outer loop, “l eave LoopB’ the
inner loop. Noticethat aplain “l eave” would aso suffice to terminate the inner loop.

stm1l = 'select Nanme from Farns';
LoopA:
for execute statenent :stml into :farmdo
begi n
stnt2 = 'select Name from Animals where Farm=""";
LoopB:
for execute statement :stm2 || :farm|| '''' into :animal do
begi n
if (animal = 'Fluffy') then | eave LoopB;
else if (animal = farn) then | eave LOOpA;
el se suspend,;
end
end

OPEN cursor

Tip

Find amore recent version at Firebird 5.0 Language Reference: OPEN

Availablein: PSQL
Added in: 2.0

Description: Opensapreviously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:
OPEN cur sor nane;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-open

PSQL statements

UDFs callable as void functions

Changedin: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFswithout assigning theresult value, i.e. likea
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of almost every
UDF isto produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to adummy variable.

Note

RDB$GET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually akind of auto-declared UDFs. Y ou may therefore call them without catching the result. Of coursethis
only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF invalid for view cursors

Changedin: 2.0

Description: Inversions2.0.x, positioned updates and del etes using WHERE CURRENT OF areno longer possible
for view cursors, due to some problems that could make such cursors unreliable. This restriction will be lifted
againin Firebird 2.1, which has an improved validation logic for views.

85

Chapter 9

Context variables

Tip

Find amore recent version at Firebird 5.0 Language Reference: Context Variables

CURRENT CONNECTI ON

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT CONNECTION

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT _CONNECTI ON returns a unigue identifier for the current connection.
Type: INTEGER
Examples:
sel ect current_connection from rdb$dat abase

execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECT! ONis stored on the database header page and reset upon restore. Since the
engineitself is not interested in thisvalue, it is only incremented if the client reads it during a session. Hence it
isonly useful asaunique identifier, not as an indicator of the number of connections since the creation or latest
restoration of the database. Please note that thiswill change in Firebird 2.1.

CURRENT ROLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT ROLE

Availablein: DSQL, PSQL
Addedin: 1.0

Description: CURRENT_ROLE is a context variable containing the role of the currently connected user. If there
isno active role, CURRENT _RCOLE is NONE.

86

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html#fblangref50-contextvars-current-connection
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-role.html

Context variables

Type: VARCHAR(31)
Example:
if (current_role <> ' MANACER)
t hen exception only_nanagers_nay_del et e;

el se
del ete from Custoners where custno = :custno;

CURRENT _ROLE awaysrepresentsavalid role or NONE. If auser connects with anon-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT_TI ME

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT TIME

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT _TI ME returns the current server time. In versions prior to 2.0, the fractional part used
to be always*“. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify
aprecision when polling this variable. The default is still O decimals, i.e. seconds precision.

Type: TIME
Syntax:

CURRENT_TI ME [(precision)]

precision ::= 0| 1] 2] 3

The optional pr eci si on argument is not supported in ESQL .
Examples:

sel ect current _tine fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect current _tinme(2) fromrdb$dat abase
-- returns e.g. 14:20:23.1200

Notes:

» Unlike CURRENT _TI ME, the default precision of CURRENT _TI MESTAMP has changed to 3 decimals. Asa
result, CURRENT _TI MESTAMP isno longer the exact sum of CURRENT _DATE and CURRENT _TI ME, unless
you explicitly specify aprecision.

* Within a PSQL module (procedure, trigger or executable block), the value of CURRENT _TI ME will remain
constant every timeit is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
timeintervals), use' NOW .

87

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-time.html

Context variables

CURRENT _TI MESTAMP

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT _TIMESTAMP

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT_TI MESTAMP returns the current server date and time. In versions prior to 2.0, the
fractional part used to bealways*®. 0000”, giving an effective precision of O decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP
Syntax:

CURRENT_TI MESTAMP [(precision)]

precision ::= 0| 1] 2] 3

The optional pr eci si on argument is not supported in ESQL .
Examples:

sel ect current _tinestanp fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinmestanp(2) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:23.1200

Notes:

e The default precision of CURRENT _TIME is «ill O decimals, so in Firebird 20 and up
CURRENT _TI MESTAMP is no longer the exact sum of CURRENT _DATE and CURRENT _TI ME, unless you
explicitly specify a precision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT _TI MESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to
measure time intervals), use' NOW .

CURRENT _TRANSACTI ON

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT TRANSACTION

Availablein: DSQL, PSQL

88

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-timestamp.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-transaction.html

Context variables

Added in: 1.5

Description: CURRENT _TRANSACTI ON contains the unique identifier of the current transaction.

Type: INTEGER
Examples:
sel ect current_transaction from rdb$dat abase

New. Txn_I D = current _transacti on;

The value of CURRENT _TRANSACTI ON is stored on the database header page and reset upon restore. Unlike
CURRENT _CONNECTI ON, itisincremented with every new transaction, whether the client readsthe value or not.

CURRENT _USER

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT USER

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:
create trigger bi_customers for custonmers before insert as
begi n
New. added_by = CURRENT_USER;
New. pur chases = 0;
end
Tip

Find amore recent version at Firebird 5.0 Language Reference: DELETING

Availablein: PSQL
Added in: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif thetrigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

89

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-user.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-deleting.html

Context variables

Type: boolean
Example:

if (deleting) then
begi n
insert into Removed_Cars (id, nake, nodel, renoved)

val ues (old.id, old. make, old.nodel, current_timestanp);
end

GDSCODE

Tip

Find amore recent version at Firebird 5.0 Language Reference: GDSCODE

Availablein: PSQL
Added in: 1.5
Changedin: 2.0

Description: In a“WHEN ... DO” error handling block, the GDSCCODE context variable contains the numerical
representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN
GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error corresponds with a Firebird error code. Outside error

handlers, GDSCCODE is always 0. Outside PSQL it doesn't exist at al.
Type: INTEGER

Example:

when gdscode grant _obj notfound, gdscode grant_fl d_notfound,
gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begi n
execute procedure |og_grant_error(gdscode);
exit;
end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj _notfound etc. But the
GDSCCDE context variableisan INTEGER. If you want to compare it against a certain error, you haveto use the

numeric value, e.g. 335544551 for grant_obj_notfound.

| NSERTI NG

Tip

Find a more recent version at Firebird 5.0 Language Reference: INSERTING

Availablein: PSQL

90

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-gdscode.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-inserting.html

Context variables

Added in: 1.5

Description: Available in triggers only, | NSERTI NG indicates if the trigger fired because of an INSERT
operation. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. seri al _num = gen_id(gen_serials, 1);
end

NEW

Tip

Find amore recent version at Firebird 5.0 Language Reference: NEW

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: NEWcontains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — NEWis always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEWwill always return
NULL; writing to it will cause aruntime exception.

" NOW

Tip

Find amore recent version at Firebird 5.0 Language Reference: 'NOW!

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: ' NOW isnot avariablebut astring literal. It is, however, special in the sense that when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be always
“. 0000”, giving an effective seconds precision. In Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
" NOW iscase-insensitive, and the engine ignores leading or trailing spaces when casting.

91

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-new.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-now.html

Context variables

Type: CHAR(3)
Examples:

sel ect ' Now from rdb$dat abase
-- returns ' Now

sel ect cast('Now as date) from rdb$dat abase
-- returns e.g. 2008-08-13

sel ect cast('now as tine) fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect cast('NOW as tinmestanp) from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date ' Now from rdb$dat abase
select tine 'now fromrdb$dat abase
sel ect tinestanp ' NOW from rdb$dat abase

Notes:

e 'NOW aways returns the actua date/time, even in PSQL modules, where CURRENT_ DATE,
CURRENT_TI ME and CURRENT_TI MESTAMP return the same value throughout the duration of the
outermost routine. This makes ' NOW useful for measuring time intervals in triggers, procedures and
executabl e blocks.

e Except in the situation mentioned above, reading CURRENT DATE, CURRENT_TIME and
CURRENT _TI MESTAMP is generally preferable to casting ' NOW . Be aware though that CURRENT _TI ME
defaults to seconds precision; to get milliseconds precision, use CURRENT _TI VE(3).

OLD

Tip

Find amore recent version at Firebird 5.0 Language Reference: OLD

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it isread-only.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — QLD is aways available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
aways return NULL; writing to it will cause a runtime exception.

92

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-old.html

Context variables

ROW COUNT

Tip

Find amore recent version at Firebird 5.0 Language Reference: ROW_COUNT

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: The ROW COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) inthe current trigger, stored procedure or executable
block.

Type: INTEGER
Example:
update Figures set Nunber = 0 where id = :id;
if (row_count = 0) then
insert into Figures (id, Nunber) values (:id, 0);
Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW COUNT is 1 if adatarow was retrieved and O otherwise.

* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the first).

e After aFETCH from a cursor, RON COUNT is 1 if adatarow was retrieved and 0 otherwise. Fetching more
records from the same cursor does not increment ROV COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is 0O after any type of SELECT statement.

Note

ROW COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or
EXECUTE PROCEDURE command.

SQLCODE

Tip

Find amore recent version at Firebird 5.0 Language Reference: SQLCODE

Availablein: PSQL

Added in: 1.5

93

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-row-count.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-sqlcode.html

Context variables

Changedin: 2.0

Description: Ina“WHEN ... DO” error handling block, the SQL CODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising

the error corresponds with an SQL error code. Outside error handlers, SQLCODE is aways 0. Outside PSQL
it doesn't exist at all.

Type: INTEGER
Example:

when any
do
begi n
if (sqglcode <> 0) then
Msg = ' An SQL error occurred!';
el se
Msg = ' Sonet hi ng bad happened!';
excepti on ex_custom Msg;
end

UPDATI NG

Tip

Find amore recent version at Firebird 5.0 Language Reference: UPDATING

Availablein: PSQL
Addedin: 1.5

Description: Available in triggers only, UPDATI NG indicates if the trigger fired because of an UPDATE
operation. Intended for use in multi-action triggers.

Type: boolean
Example:

if (inserting or updating) then
begi n
if (new. serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

94

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-updating.html

Chapter 10

Operators and predicates

Tip

Find amore recent version at Firebird 5.0 L anguage Reference. Common L anguage Elements

NULL literals allowed as operands

Changedin: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operations like “A <> NULL",“B + NULL” or “NULL < ANY(...)"” would be rejected by the parser.
Now they are allowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nullness of a field or variable by testing with “= NULL” or “<>
NULL”. Alwaysuse“l S [NOT] NULL".

Predicates. The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLs do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

|| (String concatenator)

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: Concatenation Operator

Availablein: DSQL, ESQL, PSQL

Result type VARCHAR

Changedin: 2.0

Description: The result type of string concatenations used to be CHAR(n). Starting with Firebird 2.0, it is
VARCHAR(n). As aresult, the maximum length of a concatenation outcome is now 32765 instead of 32767.

95

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html
https://www.firebirdsql.org/manual/nullguide-predicates.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-concat

Operators and predicates

Overflow checking
Changedin: 1.0, 2.0

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767
bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Tip

Find a more recent version at Firebird 5.0 Language Reference: ALL

Availablein: DSQL, ESQL, PSQL

NULL literals allowed
Changedin: 2.0
Description: The ALL predicate now allowsaNULL asthetest value. Noticethat thisbrings no practical benefits.

In particular, a NULL test value will not be considered equal to NULLSs in the subquery result set. Even if the
entire set isfilled with NULLs and the operator chosenis“=", the predicate will not returnt r ue, but NULL.

UNION as subselect
Changedin: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Tip

Find amore recent version at Firebird 5.0 Language Reference: ANY and SOME

Availablein: DSQL, ESQL, PSQL

NULL literals allowed
Changedin: 2.0
Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no

practical benefits. In particular, aNULL test value will not be considered equal to a NULL in the subquery result
Set.

96

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-quant-all
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-quant-anysome

Operators and predicates

UNION as subselect
Changedin: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

IN

Tip

Find a more recent version at Firebird 5.0 Language Reference: IN

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)" will not returnt r ue and “NULL NOT
IN (..., NULL, ..., ...)" will not returnf al se.

UNION as subselect
Changedin: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Tip

Find amore recent version at Firebird 5.0 Language Reference: IS[NOT] DISTINCT FROM

Availablein: DSQL, PSQL
Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean

Syntax:

opl 1'S [NOT] DI STINCT FROM op2

97

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-in
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-isnotdistinct

Operators and predicates

Examples:

sel ect id, nane, teacher from courses
where start_day is not distinct fromend_day

if (New. Job is distinct fromd d. Job)
then post_event 'job_changed';

IS[NOT] DISTINCT FROM awaysreturnst r ue or f al se, never NULL (unknown). The“=" and “<>" operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

Table 10.1. Comparison of [NOT] DISTINCT to“=" and “<>"

Operand Resultswith the different operators
characteristics
= NOT DISTINCT <> DISTINCT
Same value true true fal se fal se
Different values fal se fal se true true
Both NULL NULL true NULL fal se
One NULL NULL fal se NULL true

NEXT VALUE FOR

Tip

Find amore recent version at Firebird 5.0 Language Reference: NEXT VALUE FOR

Availablein: DSQL, PSQL
Added in: 2.0
Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have aways called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.
Syntax:
NEXT VALUE FOR sequence- namne
Example:

new. cust _id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

98

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-nxtvlufor

Operators and predicates

SOME

See ANY

99

Chapter 11

Internal functions

Tip

Find amore recent version at Firebird 5.0 Language Reference: Built-in Scalar Functions

BIT_LENGTH()

Tip

Find amore recent version at Firebird 5.0 Language Reference: BIT LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

Result type: INTEGER
Syntax:

BI T_LENGTH (str)
Examples:

select bit_length('Hello!') from rdb$dat abase
-- returns 48

select bit_length(_iso8859 1 'GuR di!') fromrdb$dat abase
-- returns 64: U0 and B take up one byte each in |SC8859 1

sel ect bit_length

(cast (_is08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase

-- returns 80: U and B take up two bytes each in UTF8

select bit_length

100

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-bit-length

Internal functions

(cast (_is08859 1 "G uB di!'" as char(24) character set utf8))
from rdb$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH

CAST()

Tip

Find amore recent version at Firebird 5.0 Language Reference: CAST()

Availablein: DSQL, ESQL, PSQL
Changedin: 2.0

Description: CAST converts an expression to the desired datatype. If the conversion is not possible, an error
isthrown.

Result type: User-chosen.
Syntax:
CAST (expression AS dat atype)
Shorthand syntax:
Alternative syntax, supported only when casting a string literal to aDATE, TIME or TIMESTAMP:
dat atype 'date/tinestring'
This syntax was already availablein InterBase, but was never properly documented.
Examples:
A full-syntax cast:
select cast ('12' || '-June-' || '1959' as date) from rdb$database
A shorthand string-to-date cast:

updat e People set AgeCat = 'dd'
where BirthDate < date '1-Jan-1943

Notice that you can drop even the shorthand cast from the example above, as the engine will
understand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'Ad'
where BirthDate < '1-Jan-1943'

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today' - 7 from rdb$database

101

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-casting.html#fblangref50-scalarfuncs-cast

Internal functions

The following table shows the type conversions possible with CAST.

Table11.1. Possible CASTs

From To
Numeric types Numeric types
[VAR]JCHAR
[VAR]CHAR [VAR]CHAR
Numeric types
DATE
TIME
TIMESTAMP
DATE [VAR]CHAR
TIME TIMESTAMP
TIMESTAMP [VAR]CHAR
DATE
TIME

Keep in mind that sometimesinformation islost, for instance when you cast aTIMESTAMPto aDATE. Also, the
fact that types are CAST-compatible isin itself no guarantee that a conversion will succeed. “ CAST (123456789
as SMALLINT)” will definitely result in an error, aswill “CAST('Judgement Day' as DATE)”.

New in Firebird 2.0: Y ou can now cast statement parameters to a datatype, asin:
cast (? as integer)

This gives you control over the type of input field set up by the engine. Please notice that with statement
parameters, you always need a full-syntax cast — shorthand casts are not supported.

CHAR_LENGTH(), CHARACTER_LENGTH()

Tip

Find a more recent version at Firebird 50 Language Reference: CHAR LENGTH(),
CHARACTER_LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0

Description: Gives the length in characters of the input string.

Note

With arguments of type CHAR, thisfunction returnstheformal string length (i.e. the declared length of afield or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER

102

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-char-length
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-char-length

Internal functions

Syntax:

CHAR_LENGTH (str)
CHARACTER _LENGTH (str)

Examples:

sel ect char_length('Hello!') from rdb$dat abase
-- returns 6

sel ect char _length(_is08859 1 "G iR di!') from rdb$dat abase
-- returns 8

sel ect char_l ength
(cast (_iso08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 8; the fact that 0 and B take up two bytes each is irrel evant

sel ect char_l ength

(cast (_iso08859 1 "G uB di!'" as char(24) character set utf8))
from rdb$dat abase

-- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH

COALESCE()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: COALESCE()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result isNULL.

Result type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N cknane, FirstNane, "M./Ms.') || ' ' || LastNane

as Ful | Name
from Persons

This example picks the Nickname from the Persons table. I it happens to be NULL, it goes on to FirstName. If
that tooisNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All in all, it tries to use the avail able data
to compose afull name that is asinformal as possible. Notice that this scheme only works if absent nicknames

103

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-coalesce

Internal functions

and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the * nvl external
functions.

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXTRACT()

Availablein: DSQL, ESQL, PSQL
Added in: IB 6

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. It was already
added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or DECIMAL(6,4)

Syntax:

EXTRACT (<part> FROM <dat eti me>)

<part> = YEAR | MONTH | DAY | WEEKDAY | YEARDAY
| HOUR | M NUTE | SECOND
<datetinme> ::= An expression of type DATE, TIME or Tl MESTAWP

Thereturned datatypeis DECIMAL (6,4) for the SECOND part and SMALLINT for all others. Therangesare shown
in the table below.

If you try to extract a part that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR
from aTIME), an error occurs.

Table 11.2. Rangesfor EXTRACT results

Part Range Comment
YEAR 19999

MONTH 1-12

DAY 1-31

WEEKDAY 0-6 0 = Sunday
YEARDAY 0-365 0= January 1
HOUR 0-23

MINUTE 0-59

SECOND 0.0000-59.999

104

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-datetime.html#fblangref50-scalarfuncs-extract

Internal functions

GEN_ID()

Tip

Find a more recent version at Firebird 5.0 Language Reference: GEN_ID()

Availablein: DSQL, ESQL, PSQL

Description: Increments a generator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:
CEN_I D (generator-nane, <step>)
<step> ::= An integer expression.
Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

Unlessyou know very well what you are doing, using GEN_1D() with step valueslower than 1 may compromise
your datasintegrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

IIF()

Tip

Find a more recent version at Firebird 5.0 Language Reference: 11F()

Availablein: DSQL, PSQL
Added in: 2.0

Description: 11F takesthree arguments. If thefirst evaluatestot r ue, the second argument isreturned; otherwise
thethird is returned.

Result type: Depends on input.
Syntax:

Il F (<condition> ResultT, ResultF)

105

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-generators.html#fblangref50-scalarfuncs-gen-id
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-iif

Internal functions

<condition> ::= A bool ean expression.
Example:
select iif(sex ='M, 'Sir', '"Madam) from Custoners

IIF(Cond, Resul t 1, Resul t 2) isashortcut for “CASE WHEN Cond THEN Resul t 1 ELSE Resul t 2 END”.
Y ou can also compare lIF to the ternary “? : " operator in C-like languages.

LOWER()

Tip

Find a more recent version at Firebird 5.0 Language Reference: LOWER()

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Description: Returns the lower-case equivalent of the input string. This function also correctly lowercases non-
ASCII characters, even if the default (binary) collation is used. The character set must be appropriate though:
with ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged.

Result type: (VAR)CHAR
Syntax:

LONER (str)

Note

Because LOWER is a reserved word, the interna function wil take precedence even if the external function
by that name has also been declared. To call the (inferior!) external function, use double-quotes and the exact
capitalisation, asin" LONER' (str).

Example:

sel ect Sheriff from Towns
where | ower (Nanme) = 'cooper''s vall ey’

See also; UPPER

NULLIF()

Tip

Find amore recent version at Firebird 5.0 Language Reference: NULLIF()

Availablein: DSQL, PSQL

106

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-lower
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-nullif

Internal functions

Added in: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Result type: Depends on input.
Syntax:
NULLI F (<expl>, <exp2>)
Example:
sel ect avg(nullif(Wight, -1)) from Fat Peopl e

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown™ in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note
In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul | i f external
functions.
OCTET_LENGTH()
Tip

Find a more recent version at Firebird 5.0 Language Reference: OCTET _LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER
Syntax:

OCTET_LENGTH (str)
Examples:

select octet_length('Hello!') fromrdb$dat abase

107

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-octet-length

Internal functions

-- returns 6

select octet_length(_iso8859 1 "Gl di!') fromrdb$dat abase
-- returns 8: 0 and B take up one byte each in | S08859 1

sel ect octet _length

(cast (_iso08859 1 'GuB di!' as varchar(24) character set utf8))
from r db$dat abase

-- returns 10: U and B take up two bytes each in UTF8

sel ect octet_length
(cast (_iso08859 1 'Gul di!' as char(24) character set utf8))
from rdb$dat abase
-- returns 26: all 24 CHAR positions count, and two of themare 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH

RDB$GET _CONTEXT()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: RDB$GET CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually predeclared UDFs. They arelisted
here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Description: Retrieves the value of a context variable from one of the namespaces SY STEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)
Syntax:
RDB$GET _CONTEXT (' <namespace>', ' <varnane>')

<nanmespace> ::= SYSTEM | USER SESSI ON | USER_TRANSACTI ON
<var nane> 1= A case-sensitive string of max. 80 characters

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces areinitially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
SY STEM namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 11.3. Context variablesin the SY STEM namespace

DB_NAME Either the full path to the database or — if connecting via the path is disallowed
—itsalias.

108

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html#fblangref50-scalarfuncs-get-context

Internal functions

NETWORK _PROTOCCOL The protocol used for the connection. Can be ' TCPv4' , ' WNET' , ' XNET' or

NULL.

CLI ENT_ADDRESS For TCPv4, thisis the IP address. For XNET, the local process ID. For all other
protocolsthis variableis NULL.

CURRENT _USER Same as global CURRENT _USER variable.

CURRENT_RCLE Same as global CURRENT_ROLE variable.

SESSION I D Same as global CURRENT _CONNECTI ON variable.

TRANSACTI ON_| D Same as global CURRENT _TRANSACTI ON variable.

| SOLATI ON_LEVEL The isolation level of the current transaction; can be ' READ COW TTED ,
' SNAPSHOT' or ' CONSI STENCY' .

Returnvaluesand error behaviour: If the polled variable existsin the given namespace, itsvalue will bereturned
asastring of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SY STEM namespace, an error israised. If you poll anon-existing variable in one of the other namespaces,
NUL L isreturned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NUL L
strings.

Examples:
sel ect rdb$get _context (' SYSTEM, 'DB_NAME') from rdb$dat abase
New. User Addr = rdb$get _context (' SYSTEM, ' CLI ENT_ADDRESS');

insert into MyTable (TestField)
val ues (rdb$get _context (' USER_ SESSION, 'M/Var'))

See also: RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: RDB$SET CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$SGET_CONTEXT are actually predeclared UDFs. They arelisted
here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Added in: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

109

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html#fblangref50-scalarfuncs-set-context

Internal functions

Result type: INTEGER

Syntax:

RDB$SET_CONTEXT (' <nanmespace>', '<varnane>', <value> | NULL)

<nanespace> = USER _SESSI ON | USER_TRANSACTI ON
<var nane> = A case-sensitive string of max. 80 characters
<val ue> = A value of any type, as long as it's castable

to a VARCHAR(255)

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces areinitially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
USER_SESSION context isbound to the current connection. Variablesin USER_TRANSACTION only exist inthe
transaction in which they have been set. When the transaction ends, the context and all the variables defined
init are destroyed.

Return values and error behaviour: The function returns 1 if the variable already existed before the call and O
if it didn't. To remove avariable from a context, set it to NULL. If the given namespace doesn't exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:
sel ect rdb$set context(' USER SESSION , 'MyVar', 493) from rdb$dat abase
rdb$set context (' USER SESSI ON' , ' RecordsFound', RecCounter);

sel ect rdb$set _context (' USER_TRANSACTI ON', 'Savepoints', 'Yes')
from r db$dat abase

Notes:
» The maximum number of variablesin any single context is 1000.

* All USER_TRANSACTION variables will survive a ROLLBACK RETAIN or ROLLBACK TO SAVEPOINT
unaltered, no matter at which point during the transaction they were set.

* DuetoitsUDF-like nature, RDB$SET_CONTEXT can—in PSQL only —be called like avoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

SUBSTRING()

Tip

Find amore recent version at Firebird 5.0 Language Reference: SUBSTRING()

Availablein: DSQL, PSQL
Addedin: 1.0

Changedin: 2.0

110

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-substring

Internal functions

Description: Returns a substring starting at the given position, either to the end of the string or with a given
length.

Result type: (VAR)CHAR(n)

Syntax:
SUBSTRI NG (str FROM pos [FOR | en])
str

pos
| en

a string expression
an integer expression
an i nteger expression

This function returns the substring starting at character position pos (the first position being 1). Without the
optional FOR argument, it returns all the remaining characters in the string. With it, it returns | en characters
or the remainder of the string, whichever is shorter.

Since Firebird 2.0, SUBSTRING fully supports multi-byte character sets.

In Firebird 1.x, pos and | en had to be be integer literals. In 2.0 and above they can be any valid integer
expression.

Theresult typeis VARCHAR for aVARCHAR or BLOB argument, and CHAR for a CHAR or literal argument.

The width —in characters — of the result field is always equal to the length of st r , regardless of pos and | en.
So, substring(' pi nhead' from 4 for 2) will return aCHAR(7) containing the string ' he' .

SUBSTRING can be used with:

* Any string, (var)char or text BLOB argument, regardless of its character set;
* Subtype O (binary) BLOBS.

Example:

i nsert into AbbrNames(Abbr Nane)
sel ect substring(LongNane from1 for 3) from LongNanes

Effect of NULLS

e |f str isNULL, the function returns NULL.

e |fstr isavalidstring but pos and/orl en is NULL thefunctlon returns NULL but describesthe resultfleld

TRIM()

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIM ()

Availablein: DSQL, PSQL

Added in: 2.0

111

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-trim

Internal functions

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. The

result isaVARCHAR(N) with n the formal length of the input string.
Result type: VARCHAR(N)
Syntax:

TRIM ([<adj ust>] str)

<adjust> ::= {[where] [what]} FROM

wher e = BOTH | LEADI NG | TRAILING /* default is BOTH */

what = The substring to be renoved (repeatedly if necessary)

fromstr's head and/or tail. Default is ' ' (space).
Examples:

select trim (' Waste no space ') from rdb$dat abase
-- returns 'Waste no space'

select trim(leading from' Waste no space ') from rdb$dat abase
-- returns 'Waste no space

select trim(leading '.' from' \Wiste no space ') from rdb$database
-- returns ' \Waste no space '

select trim(trailing '!" from'Help!!!!") fromrdb$dat abase
-- returns ' Hel p'

select trim('la" from'lalala | love you Ella') fromrdb$database
-- returns ' | love you E''

select trim('la" from'Lalala | love you Ella') fromrdb$database
-- returns 'Lalala | love you El'
Tip

Find amore recent version at Firebird 5.0 L anguage Reference: UPPER()

Availablein: DSQL, ESQL, PSQL

Changed in: 2.0

Description: Returns the upper-case equivalent of the input string. Since Firebird 2 this function also correctly
uppercases non-ASClI characters, even if the default (binary) collation is used. The character set must be
appropriate though: with ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the

entire string is returned unchanged.

Result type: (VAR)CHAR

112

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-upper

Internal functions

Syntax:
UPPER (str)
Examples:
sel ect upper(_iso8859 1 'Débécle')
from rdb$dat abase
-- returns 'DEBACLE (before Firebird 2.0: 'DéBACLE)
sel ect upper(_iso8859 1 'Débacle' collate fr_fr)
from rdb$dat abase

-- returns ' DEBACLE , followi ng French uppercasing rul es

See also; LOWER

113

Chapter 12

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

e i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can aso create their own UDF libraries or acquire them from third parties.

addDay

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returnsthe first argument with nunber days added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addday (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addDay' MODULE _NAME ' f budf

addHour

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addhour (atinestanp, nunber)

114

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'’

addM | I 1 Second

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber milliseconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addm | Ii second (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |'i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT "addM | |i Second" MODULE_NAME ' f budf"’

addM nut e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returnsthe first argument with nunber minutes added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addm nute (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nute

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE_NAME ' f budf'

addMont h

Library: fbudf

115

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber months added. Use negative numbersto subtract.
Result type: TIMESTAMP
Syntax:

addnmont h (ati nestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE _NAME ' f budf'

addSecond

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addsecond (ati nmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond

TI MESTAWP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addSecond’" MODULE _NAME ' f budf®

addWeek

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addweek (ati nestanp, nunber)

116

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addWeek
TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addWeek' MODULE _NAME ' f budf'’

addYear

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber years added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addyear (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addYear' MODULE_NAME ' fbudf'’

asci i _char

Library: ib_udf
Changedin: 1.0, 2.0
Description: Returnsthe ASCII character corresponding to the integer value passed in.
Result type: VARCHAR(1)
Syntax (unchanged):
ascii_char (intval)
Declaration:
DECLARE EXTERNAL FUNCTI ON asci i _char
I NTEGER NULL
RETURNS CSTRING(1) FREE IT
ENTRY_PO NT ' | B_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

117

External functions (UDFs)

TheNULL after INTEGER isan optional addition that becameavailablein Firebird 2. When declared
withthe NULL keyword, theenginewill passaNULL argument unchanged to the function. Thiscauses
aNULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:
e ascii_char (0) returnsan empty string in all versions, not a character with ASCII value 0.

» Before Firebird 2.0, the result type was CHAR(1).

dow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.
Result type: VARCHAR(15)
Syntax:
dow (ati mest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON dow
TI MESTAMP,
VARCHAR(15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf"’

See also: sdow

dpower

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns x to they 'th power.
Result type: DOUBLE PRECISION
Syntax:

dpower (x, vy)

118

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI S| ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR

RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE_NAME ' f budf'

get Exact Ti nest anp

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: CURRENT _TI MESTAMP or ' NOW

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT_TI MESTAMP always had . 0000 in the fractional part of the second. In Firebird 2.0 and
up it is better to use CURRENT_TI MESTAMP, which now also defaults to milliseconds precision. To measure
timeintervalsin PSQL modules, use' NOW .

Result type: TIMESTAMP
Syntax:
get exactti nestanp()
Declaration:
DECLARE EXTERNAL FUNCTI ON get Exact Ti mest anp

TI MESTAMP RETURNS PARAMETER 1
ENTRY_PO NT ' get Exact Ti mest anp’ MODULE_NAME ' f budf"'

| 64r ound
Seer ound.
| 64t runcat e
Seetruncat e.
| og
Library: ib_udf
Changedin: 1.5

119

External functions (UDFs)

Description: In Firebird 1.5 and up, | og(X, y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneoudly returns the base-y logarithm of x.

Result type: DOUBLE PRECISION
Syntax (unchanged):
log (x,)
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_| 0og' MODULE_NAME 'ib_udf'

Warning

If any of your pre-1.5 databases use| og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get
the wrong results.

| ower

Library: ib_udf
Changedin: 2.0
Better alternative: Internal function LOWER()

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the new, superior internal function LOWER instead.

Result type: VARCHAR(n)

Syntax:

"LONER" (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON " LOAER'
CSTRI NG&(255) NULL
RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF | ower’ MODULE NAME 'ib_udf'

The above declaration is from the filei b_udf 2. sql . " LOAER" has been surrounded by double-
guotes because LOWER, being a reserved word, cannot be used as an identifier except when quoted.
When you call thefunction, you a so have to add the quotes and use the exact capitalization, otherwise
theinternal functionwill take precedence. (M ost other internal function namesare not reserved words;
in those cases, the external function prevailsif it is declared.)

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.

120

External functions (UDFs)

Thisleadsto aNULL result, whichiscorrect. Without the NULL keyword (your only optionin pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

| pad

Library: ib_udf
Added in: 1.5
Changedin: 1.5.2, 2.0
Description: Returns the input string left-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(N)
Syntax:

| pad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255) NULL, |NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG(255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

The above declaration is from the filei b_udf 2. sql . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result isa string with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

* When calling this function, make sure endl engt h does not exceed the declared result length.

121

External functions (UDFs)

» If endl engt h islessthan st r'slength, st r istruncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated asif it were 0.

» |f padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r is returned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
» A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

[trim

Library: ib_udf
Changedin: 1.5,1.5.2, 2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):

[trim(str)
Declaration:

DECLARE EXTERNAL FUNCTION Itrim
CSTRI NG(255) NULL
RETURNS CSTRI NG(255) FREE | T
ENTRY_PONT ' IB_UDF I trim MODULE _NAME 'ib_udf’

The above declarationisfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

122

External functions (UDFs)

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, this function returned NULL if the input string was either empty or NULL.

*nul |if

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function NULLIF()

Description: Thefour * nul | i f functions—for integers, bigints, doubles and strings, respectively —each return
thefirst argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.
Syntax:
inullif (intl, int2)
i 64nul lif (bigintl, bigint2)
dnul I'i f (doubl e1, doubl e2)
snul lif (stringl, string2)

Asfrom Firebird 1.5, use of the internal function NULLIF is preferred.

Warnings

e Thesefunctions return NULL when the second argument iSNULL, even if thefirst argument isaproper val ue.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i64nullif anddnul Iif will returnwrong and/or bizarre resultsif it isnot 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both

____explicitly to the declared type (see declarationsbelow). |

Declarations;

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "iNul | If* MODULE NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64nul | i f
NUVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTOR
ENTRY_POINT 'i Nul | [f' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnul i f
DOUBLE PRECI SI ON BY DESCRI PTOR, DCUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT " dNul ['1f' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON snul i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,

123

External functions (UDFs)

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT '"sNul [1 f' MODULE_NAME ' f budf'

*nvi

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function COALESCE()

Description: The four nvl functions — for integers, bigints, doubles and strings, respectively — are NULL
replacers. They each return the first argument's value if it isnot NULL. If the first argument is NULL, the value
of the second argument is returned.

Result type: Varies, see declarations.
Syntax:
i nvl (intl, int2)
i 64nvl (bigintl, bigint2)
dnvl (doubl el, doubl e2)
snvl (stringl, string2)

Asfrom Firebird 1.5, use of theinternal function COALESCE is preferred.

Warning

i 64nvl and dnvl will return wrong and/or bizarre resultsiif it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations;

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUMERI C(18, 0) BY DESCRI PTOR, NUMERI C(18, 0) BY DESCRI PTOR
RETURNS NUMERI C(18, 0) BY DESCRI PTCR
ENTRY_PO NT "idNvl' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PREC!I SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTCR
ENTRY_PO NT "idNvl' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'sNvl' MODULE_NAME ' f budf'

124

External functions (UDFs)

rand

Library: ib_udf
Changedin: 2.0

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current time in seconds. Multiple r and() calls within the same second would
therefore return the same value. If you want that old behaviour in Firebird 2 and up, use the new function
srand() .

Result type: DOUBLE PRECISION
Syntax:
rand ()
Declaration:
DECLARE EXTERNAL FUNCTI ON rand

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_rand’ MODULE_NAME 'ib_udf"

right

Seesright.

round, | 64r ound

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5, 2.0.6

Description: Thesefunctionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)

Syntax:

round (nurber)
i 64round (bi gnunber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isrounded to 4, but - 3. 5 isrounded to - 3.

125

External functions (UDFs)

Bug alert
In versions 2.0 through 2.0.5, these functions are broken for negative numbers:

« Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to O.
e Anything between -0.6 and -1 is rounded to +1 (plus 1).

* Anything between -1 and -1.6 is rounded to -1.

e Anything between -1.6 and -2 is rounded to -2.

» Etcetera

Fixed in 2.0.6 (backport from 2.5).

Declarations:
In Firebird 1.0.x, the entry point for both functionsisr ound:

DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round" MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round" MODULE_NAME ' f budf'

In Firebird 1.5, the entry point has been renamed to f br ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR

RETURNS PARAMETER 2
ENTRY_PO NT ' f bround’ MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround’ MODULE_NAME ' f budf'’

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

r pad
Library: ib_udf
Addedin: 1.5

Changedin: 1.5.2, 2.0

Description: Returns the input string right-padded with padchar suntil endl engt h isreached.

126

External functions (UDFs)

Result type: VARCHAR(n)
Syntax:

rpad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON r pad
CSTRI NG(255) NULL, |NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG(255) FREE | T
ENTRY_PO NT ' | B_UDF_rpad’ MODULE_NAME 'ib_udf’

The above declaration is from the filei b_udf 2. sql . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result isa string with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

» If endl engt h islessthan st r'slength, st r istruncated to endl engt h. If endl engt h is negative, the
result isNULL.

« A NULL endl engt h istreated asif it wereO.

» If padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
» A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf
Changedin: 1.5,1.5.2,2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to usetheinternal function TRIM instead, asit is both more powerful and more versatile.

127

External functions (UDFs)

Result type: VARCHAR(n)
Syntax (unchanged):
rtrim(str)
Declaration:
DECLARE EXTERNAL FUNCTION rtrim
CSTRI NG(255) NULL
RETURNS CSTRI NG 255) FREE_IT
ENTRY_PO NT 'IB_UDF rtrim MODULE_NAME 'ib_udf’

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

sdow

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)
Syntax:
sdow (ati mest anp)
Declaration:
DECLARE EXTERNAL FUNCTI ON sdow
TI MESTAWP,

VARCHAR(5) RETURNS PARAMETER 2
ENTRY_PO NT ' SDOW MODULE_NAME ' f budf'

128

External functions (UDFs)

See also: dow

sr and

Library: ib_udf
Added in: 2.0

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiplesr and() callswithinthe samesecondwill returnthe samevalue. Thisisexactly howr and()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION
Syntax:
srand ()
Declaration:
DECLARE EXTERNAL FUNCTI ON sr and

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_srand’ MODULE_NAME 'ib_udf’

sri ght

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returnsthe rightmost nunthar s characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)
Syntax:
sright (str, nunthars)
Declaration:
DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'right' MODULE_NAME ' f budf’

string2bl ob

Library: fbudf

129

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the input string as a BLOB.
Result type: BLOB
Syntax:
string2blob (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR(300) BY DESCRI PTOR,

BLOB RETURNS PARAMETER 2
ENTRY_PO NT ' string2bl ob’ MODULE_NAME ' f budf'

strl en

Library: ib_udf
Added in: IB
Better alternatives: Internal functions BIT_LENGTH(), CHAR[ACTER]_LENGTH and OCTET_LENGTHY()
Description: Returns the length of the argument string.
Result type: INTEGER
Syntax:

strlen (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON strlen

CSTRI NG 32767)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_strlen' MODULE_NAME 'ib_udf'’

substr

Library: ib_udf
Changedin: 1.0,1.5.2, 2.0

Description: Returns a string's substring from st ar t pos to endpos, inclusively. Positions are 1-based. If
endpos ispast theend of thestring, subst r returnsall the charactersfromst ar t pos to the end of the string.
This function only works correctly with single-byte characters.

Result type: VARCHAR(Nn)

130

External functions (UDFs)

Syntax (unchanged):
substr (str, startpos, endpos)
Declaration:
DECLARE EXTERNAL FUNCTI ON substr
CSTRI NG 255) NULL, SMALLI NT, SMALLI NT
RETURNS CSTRI NG 255) FREE_IT
ENTRY_PO NT ' | B_UDF_substr' MODULE_NAME 'ib_udf"

The above declaration isfromthefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL resullt,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InlinterBase, subst r returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are slightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrl en

Library: ib_udf

Added in: 1.0

Changedin: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

Description: Returns the substring starting at st art pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h is smaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax:

substrlen (str, startpos, |ength)

131

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTI ON substrlen
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG(255) FREE IT
ENTRY_PO NT ' 1B UDF_substrlen’ MODULE NAME 'ib_udf'

The above declaration isfromthefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL resullt,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering substrl en
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

truncate,i 64truncat e

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5, 2.0.6

Description: These functionsreturn thewhole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)
Syntax:

truncate (nunber)
i 64t runcat e (bi gnunber)

Caution

Both functions round to the nearest whole number that is lower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns- 3.

132

External functions (UDFs)

Bug alert

Contrary to what's mentioned above, in versions 2.0 through 2.0.5 anything between -1 and 0 is truncated to 0.
This anomaly has been corrected in Firebird 2.0.6 and above (as a backport from 2.5).

Declarations:
In Firebird 1.0.x, the entry point for both functionsist r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE _NAME ' f budf'’

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'fbtruncate' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncat e
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' f budf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

133

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SJIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese
data columns using either parameterized queries or literal strings without introducer syntax would fail with
trandliteration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
are still stored “asis’ but what is stored isan exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no tranditeration
error. When the connection character set isNONE, no attempt ismade in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atranditeration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still reguired when handling
heterogeneous character sets from aclient context that is anything other than NONE. Both methods are shown
below, using character set 1508859 _1 as an example target. Noticethe“_" prefix in the introducer syntax.

Introducer syntax:
_1'SC8B859 1 nystring

Casting:
L CAST (nystring AS VARCHAR(n) CHARACTER SET |SMW859 1) |

134

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row set is:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who
thoroughly understand its consequences. Knowledge of the various levels of transaction isolation is essential.
WITH LOCK is available in DSQL and PSQL, and only for top-level, single-table SELECTS. As stated in the
reference part of this guide, WITH LOCK is not available:

* inasubquery specification;

o forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

» with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardliess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour
isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are
ignored.
isC_tpb_concurrency If arecord is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction has

135

Notes

TPB mode Behaviour
+isc_tpb_nowait performed a modification of this record, an update conflict exception is raised
immediately.
isC_tpb_concurrency If therecord is modified by any transaction that has committed since the
_ _ transaction attempting to get explicit lock started, an update conflict exception is
+isc_tpb_wait raised immediately.

If an active transaction is holding ownership on thisrecord (via explicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read_committed | If thereisan active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the
+isc_tpb_wait explicit lock waits for the outcome of blocking transation and when it finishes,
attempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waitsfor the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif thisrecord had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that al records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not be locked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, parallel transactions commit their changes during the course of the locking
statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

136

Notes

The optional “OF <col um- nanmes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- nanes>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to process the currently-locked row before the next isfetched and locked, or to handle errors without
rolling back your transaction.

Caveats using WITH LOCK

* Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

* While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

* Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

» Explicit locking isan advanced feature; do not misuseit! While solutionsfor these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking
i. Simple

SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK
ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

A note on CSTRING parameters

External functions involving strings often use the type CSTRING(n) in their declarations. This type represents
a zero-terminated string of maximum length n. Most of the functions handling CSTRINGs are programmed in
such away that they can accept and return zero-terminated strings of any length. So why the n? Because the
Firebird engine has to set up space to process the input an output parameters, and convert them to and from
SQL datatypes. Most strings used in databases are only dozens to hundreds of bytes long; it would be a waste
to reserve 32 KB of memory each time such a string is processed. Therefore, the standard declarations of most

137

Notes

CSTRING functions—as found in the filei b_udf . sql — specify alength of 255 bytes. (In Firebird 1.5.1 and
below, this default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG 255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or causeit to return astring longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A special caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that al the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that majority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(100) FREE | T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER CSTRI NG 1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_PO NT ' | B_UDF | pad'’ MODULE_NAME 'ib_udf';

Now you cancal | pad() foral thesmall stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

Passing NULL to UDFs in Firebird 2

If apre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to azero-equivalent, e.g. anumerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the“BY DESCRIPTOR” mechanism introduced in Firebird 1. Thef budf library uses descriptors, but the
vast mgjority of UDFs, including thosein Firebird'sstandardi b_udf library, still usethe old style of parameter
passing, inherited from InterBase.

As a conseguence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as anull pointer to the function, if the function has been declared to the database with aNULL
keyword after the argument(s) in question, e.g. like this:

decl are external function Itrim
cstring(255) null
returns cstring(255) free_it
entry point "IB UDF Itrim nodul e_nane 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

138

Notes

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLs are dealt with correctly.
Alwayslook at the declarations provided by the function implementor. For the functionsinthei b_udf library,
consulti b_udf 2. sql inthe Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf . sql .

Thesearethei b_udf functions that have been updated to recognise NULL input and handle it properly:

e ascii_char

| ower

e | pad andr pad

e [trimandrtrim

e substr andsubstrl en

Mosti b_udf functionsremain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower , . t ri mand subst r * in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database

If you are using an existing database with one or more of thefunctionslisted above under Firebird 2, and you want
to benefit from the improved NULL handling, run the script i b_udf _upgr ade. sql against your database. It
islocated in the Firebird m sc\ upgr ade\i b_udf directory.

Maximum number of indices
in different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sums them all up.

Table A.2. Max. indices per tablein Firebird 1.0-2.0

Page Firebird version(s)
size

1.0,1.0.2 103 15X 2.0x

l1col | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols | 3cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 201 227

16384 | 65 65 65 1022 | 818 681 257 257 257 818 584 | 454

139

Appendix B:
Document History

The exact file history is recorded in the manual module in our CVS tree; see http://firebird.cvs.sourceforge.

net/viewvc/firebird/manual/

Revision History
09 24 Sep 2008 PV First publication, based on the Firebird 1.5 Language Reference
Update with all the changes for 2.0 added (roughly doubling the size).

1.0 8 Dec 2010 PV GLOBAL: Renamed all “Deprecated in” section headers to “ Better
aternative’. This also required editing the text immediately following
the header and in some cases additional text in the section (if the
“deprecation” was discussed in the section body).

Bookinfo: Added 2.0.6 to covered versions.

Introduction :: Versions covered: Added 2.0.6.

Introduction :: Authorship: Edited first paragraph. Added Frank
Ingermann to contributor list.

Miscellaneous language elements: Added section Shorthand casts.
Data types and subtypes :: BLOB data type: In Description, BLOBS -
> text BLOBS. Also added information on new bi nar y mnemonic +
extraexample.

Data types and subtypes :: New collations: Edited paragraph above
table. Improved the two paragraphs below the table and moved them
into a Note.

DDL statements :: ALTER DATABASE: Merged difference file clauses
onto oneline in Syntax.

DDL statements :: ALTER DOMAIN: Added section Rename domain.
DDL statements :: ALTER TABLE: Added section FOREIGN KEY without
target column references PK.

DDL statements:: ALTER TRIGGER: Corrected formal syntax (can be
called with just the trigger name and no modifications).

DDL statements :: CREATE DATABASE: Moved Syntax one level up,
marked it as partial and added DIFFERENCE FILE clause. Added new
subsection DIFFERENCE FILE parameter.

DDL statements: Added section CREATE EXCEPTION.

DDL statements :: CREATE INDEX: Edited Description and Syntax.
DDL statements :: CREATE INDEX :: Indexing on expressions: Edited
Description.

DDL statements :: CREATE INDEX :: Maximum number of indices per
table increased: Edited paragraph under table.

DDL statements :: CREATE TABLE: Added section FOREIGN KEY
without target column references PK.

DDL statements:: CREATE VIEW :: Full SELECT syntax supported:
Added Note about the necessity of afull column list when using a
union within aview (to become optional in 2.5).

DDL statements :: CREATE VIEW :: PLAN subclause disallowed in 1.5:
Changed title to PLAN subclause disallowed in 1.5, reallowed in 2.0.

140

http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://sourceforge.net/cvs/?group_id=9028
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://sourceforge.net/cvs/?group_id=9028

Document History

DDL statements :: CREATE VIEW: Added subsection View with non-
participating NOT NULL columnsin base table can be made insertable.
DDL statements :: DECLARE EXTERNAL FUNCTION: Added Note under
Syntax.

DDL statements :: DECLARE EXTERNAL FUNCTION :: BY DESCRIPTOR
parameter passing: Added “Availablein”.

DDL statements :: DECLARE EXTERNAL FUNCTION :: RETURNS
PARAMETER n: Added “Availablein”. Changed subcl ause ->

cl ause in Description (2x).

DDL statements :: DECLARE FILTER: Edited Description. Added

user _def i ned to Syntax. Added more info under Syntax block and
made it an itemizedlist. Converted Tip to formal para User-defined
MNemonics.

DML statements :: DELETE: Added [AS] to Syntax. Corrected syntax
note on WHERE CURRENT OF.

DML statements :: DELETE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: DELETE: Added subsection Relation alias makes
real name unavailable.

DML statements :: EXECUTE BLOCK: Edited Syntax block.

DML statements :: INSERT: Added definition of <sel ect _expr >to
Syntax.

DML statements :: INSERT :: RETURNING clause: Edited Description.
Added formalpara“Note".

DML statements:: SELECT :: Aggregate functions: Extended
functionality :: Aggregate statements: Sricter HAVING and ORDER BY:
Edited second listitem. Edited last paragraph.

DML statements:: SELECT :: FIRST and SKIP: Added “Availablein”.
DML statements:: SELECT :: Table alias must be used if present:
Renamed to Relation alias makes real name unavailable. Also changed
Description and paragraph before last example.

DML statements :: UPDATE: Added [AS] to Syntax. Corrected syntax
note on WHERE CURRENT OF.

DML statements :: UPDATE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: UPDATE: Added subsection Relation alias makes
real name unavailable.

Transaction control statements:: SET TRANSACTION: Edited 2nd
listitem after Syntax block.

PSQL statements: Changed introductory paragraph to mention
executable blocks.

PSQL statements :: DECLARE :: DECLARE ... CURSOR: Edited
Description. Added Notes formalpara.

PSQL statements :: DECLARE [VARIABLE] with initialization: Indented
var declarations in Example.

PSQL statements :: EXCEPTION :: Providing a custom error message:
Added note about max message length.

PSQL statements :: EXECUTE STATEMENT :: Caveats with EXECUTE
STATEMENT: Changed SQL -> DSQL initem 4. Rewrote item 6.
PSQL statements: Added section FOR SELECT ... INTO ... DO.

PSQL statements: Added section WHERE CURRENT OF invalid for view
CUrsors.

141

Document History

Context variables :: CURRENT_CONNECTI ON: Improved Description.
Added note about upcoming changein 2.1 to last paragraph.

Context variables :: CURRENT_TI ME: Edited description. Removed
Note and added Notes formalpara.

Context variables :: CURRENT_TI MESTAMP: Edited description.
Removed Note and added Notes formalpara.

Context variables :: CURRENT_TRANSACTI ON: Improved
Description.

Context variables:: ' NOW : Added shorthand cast examples. Removed
Note and added Notes formalpara.

Operatorsand predicates :: || (string concatenator): New subsection
Result type VARCHAR.

Operators and predicates :: || (string concatenator) :: Overflow
checking: Corrected “Changed in” and Description.

Internal functions:: BIT_LENGTH(): Edited Note after Syntax block and
placed it after Description.

Internal functions:: CAST(): Added introductory paragraphs before 1st
and 2nd example. Gave table rows top alignment. Added paragraph
after “cast (? as integer)” example.

Internal functions :: CHAR_LENGTH(), CHARACTER_LENGTH(): Edited
Note after Syntax block and placed it after Description.

Internal functions:: LOWER(): Corrected Result type: VAR(CHAR) ->
(VAR)CHAR.

Internal functions:: OCTET_LENGTH(): Edited Note after Description.
Internal functions :: RDB$GET_CONTEXT(): Added Note after title.
Replaced “general” with “global” (4x) in System namespace table.
Internal functions :: RDB$SET_CONTEXT(): Added Note after title.
Altered 3rd listitem in Notes formal para.

Internal functions:: SUBSTRING(): Edited Result type, Syntax and
much of thetext in the rest of this section.

Internal functions:: TRIM(): Edited/corrected Description, Result type
and Syntax.

Internal functions :: UPPER(): Corrected Result type: VAR(CHAR) ->
(VAR)CHAR. Corrected “See also” link: UPPER -> LOWER.

External functions:: get Exact Ti mest anp: Edited “ Better
aternative” and Description.

External functions:: | og: Changed | og ->1 og(x, y) in Description.
External functions:: ri ght : movedtosri ght and left asymlink in
place.

External functions:: r ound, i 64r ound: Added 2.0.6 to Changed in.
Added Caution box. Edited and extended Bug warning box. Extended
last paragraph.

External functions: Added sectionst r | en.

External functions:: t runcat e, i 64t r uncat e: Added 2.0.6 to
Changed in. Added Caution box. Edited Warning box. Extended last
paragraph.

Notes :: Understanding the WITH LOCK clause :: Syntax and
behaviour: In table, aligned 1st column left, all rows top, and added
periods to sentencesin first two rows.

License notice: Added Frank Ingermann as contributor. Copyright end
year now 2010.

142

Document History

11

12

00 Xxx 2011

4 Oct 2024

PV

MR

Introduction :: Subject matter: Changed ulink to Firebird
Documentation Index (both text and url).

DDL statements:: ALTER DATABASE :: END BACKUP: Updated URL
of Firebird Documentation Index in Tip.

DML statements :: SELECT: New subsection [AS] beforerelation alias.
DML statements :: SELECT :: ROWS Removed illegal first ORDER BY
from UNION example and compacted layout. Edited the “When used
with aUNION...” para (further down in this section) accordingly.
Context variables :: GDSCODE: Rewrote Description in light of new,
so far undocumented behaviour since Firebird 2.0. Corrected Example:
after WHEN GDSCODE a symbolic name must follow, not a number.
Added notice after Example to explain same.

Context variables :: SQLCODE: Added “Changed in” formalpara.
Rewrote Description in light of new, so far undocumented behaviour
since Firebird 2.0.

Internal functions:: LOWER(): Added Note after Syntax.

External functions:: | ower : Dropped last sentence from Description.
Altered first paragraph after Declaration block and removed comment.
Document history: Link to CV S changed, points directly to manual
module now.

License Notice: (C) end year now 2011.

Added links to Firebird 5.0 Language Reference as more recent
documentation

143

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the
“License”); you may only use this Documentation if you comply with the terms of this License. Copies of the
License are available at https.//www.firebirdsgl.org/pdfmanual/pdl.pdf (PDF) and https.//www.firebirdsgl.org/
manual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.0 Language Reference Update.
The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.
Copyright (C) 2008—2024 All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL -licensed material (the“al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Alex Peshkov, Nickolay Samofatov, Dmitry Y emanov, Mark Rotteveel.

Included portions are Copyright (C) 2001-2024 by their respective authors. All Rights Reserved.

144

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html
https://www.firebirdsql.org/manual/pdl.html

	Firebird 2.0 Language Reference Update
	Table of Contents
	Introduction
	Versions covered
	Authorship

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New keywords

	Dropped since InterBase 6
	No longer reserved
	No longer keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Shorthand casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	New character sets
	Character set NONE handling changed
	New collations

	DDL statements
	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	ALTER EXTERNAL FUNCTION
	ALTER PROCEDURE
	Default argument values
	Restriction on altering used procedures

	ALTER SEQUENCE
	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TRIGGER
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	COMMENT
	CREATE DATABASE
	16 Kb page size supported
	DIFFERENCE FILE parameter

	CREATE DOMAIN
	Context variables as defaults

	CREATE EXCEPTION
	Message length increased

	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	CREATE PROCEDURE
	CREATE SEQUENCE
	CREATE TABLE
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	CREATE TRIGGER
	Multi-action triggers
	CREATE TRIGGER no longer increments table change count
	PLAN allowed in trigger code

	CREATE VIEW
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base table can be made insertable

	CREATE OR ALTER EXCEPTION
	CREATE OR ALTER PROCEDURE
	CREATE OR ALTER TRIGGER
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	DECLARE FILTER
	DROP GENERATOR
	DROP PROCEDURE
	Restriction on dropping used procedures

	DROP SEQUENCE
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE EXCEPTION
	RECREATE PROCEDURE
	Restriction on recreating used procedures

	RECREATE TABLE
	RECREATE TRIGGER
	Restriction on recreating used triggers

	RECREATE VIEW
	REVOKE ADMIN OPTION
	SET GENERATOR

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	ROWS

	EXECUTE BLOCK
	EXECUTE PROCEDURE
	INSERT
	RETURNING clause
	UNION allowed in feeding SELECT

	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	[AS] before relation alias
	COLLATE subclause for text BLOB columns
	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	ROWS

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	UDFs callable as void functions
	WHERE CURRENT OF invalid for view cursors

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Result type VARCHAR
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SOME

	Internal functions
	BIT_LENGTH()
	CAST()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	COALESCE()
	EXTRACT()
	GEN_ID()
	IIF()
	LOWER()
	NULLIF()
	OCTET_LENGTH()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	SUBSTRING()
	TRIM()
	UPPER()

	External functions (UDFs)
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	dow
	dpower
	getExactTimestamp
	i64round
	i64truncate
	log
	lower
	lpad
	ltrim
	*nullif
	*nvl
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird versions

	B. Document History
	C. License notice

