
Firebird 4.0 Release Notes
Firebird Project: Core Developers, Helen Borrie, Dmitry Yemanov

Version 0400-39, 23 October 2021

Table of Contents
1. General Notes . 7

Bug Reporting . 7

Documentation . 7

2. New In Firebird 4.0 . 8

Summary of New Features. 8

Complete In Firebird 4.0 Final Release. 8

Complete In Release Candidate 1. 9

Complete In Beta 2 . 11

Complete In Beta 1 . 15

Compatibility with Older Versions . 18

3. Changes in the Firebird Engine . 19

Maximum Page Size Increased To 32KB. 19

External Functions (UDFs) Feature Deprecated . 19

Support for International Time Zones . 19

Session Time Zone. 20

Time Zone Format . 20

Data Types for Time Zone Support . 20

API Support for Time Zones . 21

Time Zone Statements and Expressions . 21

Virtual table RDB$TIME_ZONES . 21

Package RDB$TIME_ZONE_UTIL . 21

Updating the Time Zone Database. 23

Firebird Replication . 23

Replication Modes . 24

Access Modes . 24

Journaling . 24

Error Reporting . 25

Setting Up Replication . 26

Pooling of External Connections . 30

Key Characteristics of Connection Pooling . 30

How the Connection Pool Works . 31

Managing the Connection Pool. 32

Querying the Connection Pool . 32

Parameters for Configuring the Connection Pool . 32

Timeouts at Two levels . 33

Idle Session Timeouts . 33

Statement Timeouts . 36

Commit Order for Capturing the Database Snapshot . 41

Table of Contents

1

The 'Commit Order' Approach . 41

Read Consistency for Statements in Read-Committed Transactions. 43

Garbage Collection . 46

Precision Improvement for Calculations Involving NUMERIC and DECIMAL 47

Increased Number of Formats for Views . 47

Optimizer Improvement for GROUP BY . 48

xinetd Support on Linux Replaced. 48

Support for RISC v.64 Platform . 48

Virtual table RDB$CONFIG. 48

4. Changes to the Firebird API and ODS . 50

ODS (On-Disk Structure) Changes . 50

New ODS Number . 50

New System Tables . 50

New Columns in System Tables . 50

Application Programming Interfaces . 51

Services Cleanup . 51

Services API Extensions . 51

Timeouts for Sessions & Statements . 51

New Isolation Sub-level for READ COMMITTED Transactions. 51

Support for Batch Insert and Update Operations in the API. 52

API Support for Time Zones . 58

API Support for DECFLOAT and Long Numerics . 61

Additions to Other Interfaces . 63

Extensions to various getInfo() Methods . 64

Additions to the Legacy (ISC) API. 66

5. Reserved Words and Changes . 67

New Keywords in Firebird 4.0 . 67

Reserved . 67

Non-reserved . 67

6. Configuration Additions and Changes. 68

Parameters for Timeouts . 68

ConnectionIdleTimeout . 68

StatementTimeout . 68

Parameters for External Connection Pooling . 68

ExtConnPoolSize . 68

ExtConnPoolLifetime . 68

Parameters to Restrict Length of Object Identifiers . 68

MaxIdentifierByteLength . 69

MaxIdentifierCharLength . 69

Parameters Supporting Read Consistency in Transactions . 69

ReadConsistency . 69

Table of Contents

2

TipCacheBlockSize. 70

SnapshotsMemSize . 70

Other Parameters. 70

ClientBatchBuffer . 70

DataTypeCompatibility . 70

DefaultTimeZone . 71

OutputRedirectionFile . 71

Srp256 becomes the default authentication method . 71

ChaCha is added as a default wire encryption method . 71

TempCacheLimit at database level . 71

UseFileSystemCache is added as a replacement for FileSystemCacheThreshold 71

InlineSortThreshold . 72

7. Security . 73

Enhanced System Privileges . 73

List of Valid System Privileges . 73

New Grantee Type SYSTEM PRIVILEGE . 74

Assigning System Privileges to a Role. 74

Function RDB$SYSTEM_PRIVILEGE . 75

Granting a Role to Another Role. 75

The DEFAULT Keyword . 76

WITH ADMIN OPTION Clause . 76

Example Using a Cumulative Role. 76

Revoking the DEFAULT Property of a Role Assignment . 76

Function RDB$ROLE_IN_USE . 77

SQL SECURITY Feature . 77

Triggers . 78

Examples Using the SQL SECURITY Property . 79

Built-in Cryptographic Functions. 82

ENCRYPT() and DECRYPT() . 82

RSA_PRIVATE() . 83

RSA_PUBLIC() . 83

RSA_ENCRYPT() . 83

RSA_DECRYPT() . 84

RSA_SIGN_HASH() . 84

RSA_VERIFY_HASH(). 85

Improvements to Security Features . 86

User Managing Other Users . 86

8. Management Statements . 87

Connections Pooling Management . 87

ALTER EXTERNAL CONNECTIONS POOL. 87

ALTER SESSION RESET . 88

Table of Contents

3

Errors handling . 89

Time Zone Management. 90

SET TIME ZONE . 90

Timeout Management. 90

Setting DECFLOAT Properties . 90

Setting Data Type Coercion Rules . 91

9. Data Definition Language (DDL). 94

Quick Links . 94

Extended Length for Object Names. 94

Restricting the Length . 94

New Data Types . 94

Data Type INT128 . 94

Data Types TIME WITH TIME ZONE and TIMESTAMP WITH TIME ZONE 95

Data Type DECFLOAT . 95

DDL Enhancements . 96

Increased Precision for Exact Numeric Types . 97

Standard Compliance for Data Type FLOAT . 98

Data Type Extensions for Time Zone Support . 98

Aliases for Binary String Types . 99

Extensions to the IDENTITY Type . 99

Excess parameters in EXECUTE STATEMENT. 103

Replication Management. 103

10. Data Manipulation Language (DML). 105

Quick Links . 105

Lateral Derived Tables . 105

DEFAULT Context Value for Inserting and Updating. 106

DEFAULT vs DEFAULT VALUES . 107

OVERRIDING Clause for IDENTITY Columns. 107

Extension of SQL Windowing Features . 107

Frames for Window Functions . 109

Named Windows . 112

More Window Functions . 113

FILTER Clause for Aggregate Functions . 114

Syntax for FILTER Clauses. 115

Optional AUTOCOMMIT for SET TRANSACTION . 115

Sharing Transaction Snapshots . 115

Expressions and Built-in Functions. 116

New Functions and Expressions . 116

Changes to Built-in Functions and Expressions . 123

SUBSTRING(). 124

UDF Changes. 124

Table of Contents

4

Miscellaneous DML Improvements. 125

Improve Error Message for an Invalid Write Operation. 125

Improved Failure Messages for Expression Indexes . 125

RETURNING * Now Supported . 125

11. Procedural SQL (PSQL) . 127

Recursion for subroutines . 127

A Helper for Logging Context Errors . 128

System Function RDB$ERROR() . 128

Allow Management Statements in PSQL Blocks. 129

12. Monitoring & Command-line Utilities. 131

Monitoring. 131

nbackup . 132

UUID-based Backup and In-Place Merge . 132

Restore and Fixup for Replica Database . 133

isql . 133

Support for Statement Timeouts . 133

Better transaction control . 133

gbak . 135

Backup and Restore with Encryption. 135

Enhanced Restore Performance . 137

Friendlier “-fix_fss_*” Messages. 137

Ability to Backup/Restore Only Specified Tables . 138

gfix . 138

Configuring and managing replication . 138

13. Compatibility Issues . 139

SQL . 139

Deprecation of Legacy SQL Dialect 1 . 139

Read Consistency for READ COMMITTED transactions Used By Default. 139

Deprecation of External Functions (UDFs) . 139

Changes in DDL and DML Due to Timezone Support . 141

Prefixed Implicit Date/Time Literals Now Rejected . 141

Starting Value of Sequences . 142

INSERT … RETURNING Now Requires a SELECT privilege . 143

Utilities . 143

Deprecation of QLI . 143

14. Bugs Fixed . 144

Firebird 4.0 Release: Bug Fixes. 144

Core Engine. 144

Server Crashes/Hang-ups . 148

API/Remote Interface . 149

Build Issues . 149

Table of Contents

5

Utilities. 150

Firebird 4.0 Release Candidate 1: Bug Fixes . 150

Core Engine. 150

Server Crashes/Hang-ups . 155

API/Remote Interface . 155

Build Issues . 156

Utilities. 156

Firebird 4.0 Beta 2 Release: Bug Fixes . 156

Core Engine. 156

Server Crashes/Hang-ups . 161

API/Remote Interface . 162

Build Issues . 162

Utilities. 163

Firebird 4.0 Beta 1 Release: Bug Fixes . 165

Core Engine. 165

Server Crashes/Hang-ups . 169

Security . 169

Utilities. 170

Build Issues . 171

Firebird 4.0 Alpha 1 Release: Bug Fixes . 171

15. Firebird 4.0 Project Teams. 174

Appendix A: Licence Notice . 175

Table of Contents

6

Chapter 1. General Notes
Thank you for choosing Firebird 4.0. We cordially invite you to test it hard against your
expectations and engage with us in identifying and fixing any bugs you might encounter.

ODS 13 is introduced and it’s a major ODS upgrade, so older databases cannot be opened with a
Firebird 4 server. The engine library is named engine13.dll (Windows) and libEngine13.so (POSIX).
The security database is named security4.fdb. Binaries layout and configuration are unchanged
from Firebird 3.

That said, you can copy the Firebird engine library from the Firebird 3.0
distribution package (named engine12.dll (Windows) and libEngine12.so (POSIX),
and located inside the /plugins sub-directory) to continue working with databases
in ODS12 without needing a backup/restore. However, new features introduced
with Firebird 4.0 will not be accessible.

Known incompatibilities are detailed in the Compatibility Issues chapter.

Bug Reporting
Bugs fixed since Firebird 3.0.7 and Firebird 4.0 Release Candidate 1 are listed and described in the
Bugs Fixed chapter.

• If you think you have discovered a new bug in this release, please make a point of reading the
instructions for bug reporting in the article How to Report Bugs Effectively, at the Firebird
Project website.

• If you think a bug fix has not worked, or has caused a regression, please locate the original bug
report in the Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide
details of the OS platform. Include reproducible test data in your report and post it to our
Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this beta by subscribing
to the field-testers' list and posting the best possible bug description you can.

3. If you want to start a discussion thread about a bug or an implementation, please do so by
subscribing to the firebird-devel list.

Documentation
You will find all of the README documents referred to in these notes — as well as many others not
referred to — in the doc sub-directory of your Firebird 4.0 installation.

 — The Firebird Project

Chapter 1. General Notes

7

https://www.firebirdsql.org/en/how-to-report-bugs/
https://github.com/FirebirdSQL/firebird/issues
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe

Chapter 2. New In Firebird 4.0

Summary of New Features
Firebird 4.0 introduces new data types and many improvements without radical changes in
architecture or operation, the most important are:

• Built-in logical replication;

• Extended length of metadata identifiers (up to 63 characters);

• Decimal floating points (DECFLOAT);

• Increased maximum precision of NUMERIC and DECIMAL to 38 digits;

• Introduction of INT128 (128-bit integer);

• Time zone support (TIME WITH TIME ZONE, TIMESTAMP WITH TIME ZONE);

• Lateral derived tables;

• Configurable time-outs for connections and statements;

• Pooling of external connections;

• Batch operations in the API;

• Built-in functions for encryption and cryptographic hashes;

• Built-in functions for encoding and decoding Base64 and hex;

• Extensive system privileges and ability to assign automatic roles;

• Engine and database configuration (read-only) exposed through virtual table RDB$CONFIG;

• Maximum page size increased to 32KB.

The following list summarises the features and changes, with links to the chapters and topics where
more detailed information can be found.

Complete In Firebird 4.0 Final Release

Renamed functions RSA_SIGN and RSA_VERIFY

Functions priorly introduced as RSA_SIGN and RSA_VERIFY have been renamed to RSA_SIGN_HASH
and RSA_VERIFY_HASH respectively.

Tracker ticket #6806

Session time zone is available via the system context

The SYSTEM namespace of the built-in function RDB$GET_CONTEXT has been extended with the
SESSION_TIMEZONE parameter that returns the time zone of the current session.

Tracker ticket #6786

More efficient implementation of SUBSTRING for UTF-8 character set

Built-in function SUBSTRING has been improved to provide better performance when called with

Chapter 2. New In Firebird 4.0

8

https://github.com/FirebirdSQL/firebird/issues/6806
https://github.com/FirebirdSQL/firebird/issues/6786

UTF-8 input strings.

Tracker ticket #6769

Allow replication plugins to refuse the current attachment

The replication plugin API has been extended to allow the plugin to validate the attachment and
return an error if it refuses to replicate its changes.

Tracker ticket #6767

Immediate execution of DSQL_drop and DSQL_unprepare commands

Delayed execution of DSQL_drop and DSQL_unprepare options of the dsql_free_statement()
operation has been replaced with an immediate execution in order to release resource locks
faster.

Tracker ticket #6748

Provide time zone ID constants in public headers

Time zone IDs used by the Firebird engine have been made available in the header files of the
public API.

Tracker ticket #6715

Make RDB$GET_TRANSACTION_CN working the same way in Super and Classic

Built-in function GET_TRANSACTION_CN has been fixed to return the same result (proper commit
number) for the given transaction number in all architectures. Priorly it might return NULL in
Classic Server.

Tracker ticket #6253

Complete In Release Candidate 1

ALTER SESSION RESET statement

New command to reset user session environment to its initial (default) state has been added.

For full details, see ALTER SESSION RESET Statement in the Management Statements chapter.

Tracker ticket CORE-5832

New virtual table RDB$CONFIG

This table exposes configuration settings actual for the current database.

For full details, see Virtual table RDB$CONFIG in the Engine chapter.

Tracker ticket CORE-3708

Report replica mode through isc_database_info, MON$DATABASE and SYSTEM context

The replica state of the database (none / read-only / read-write) is now surfaced via the
MON$DATABASE table and Attachment::getInfo() API call. It can also be read using the context
variable REPLICA_MODE of the SYSTEM namespace.

Chapter 2. New In Firebird 4.0

9

https://github.com/FirebirdSQL/firebird/issues/6769
https://github.com/FirebirdSQL/firebird/issues/6767
https://github.com/FirebirdSQL/firebird/issues/6748
https://github.com/FirebirdSQL/firebird/issues/6715
https://github.com/FirebirdSQL/firebird/issues/6253
http://tracker.firebirdsql.org/browse/CORE-5832
http://tracker.firebirdsql.org/browse/CORE-3708

For full details, see Monitoring in the Monitoring & Command-line Utilities chapter and
Extensions to various getInfo() Methods in the Changes to the Firebird API and ODS chapter.

Tracker ticket CORE-6474

Tracing of session management statements

The trace manager has been extended to report also the new category of session management
statements, e.g. ALTER SESSION RESET.

Trace plugin developers should be prepared to accept the NULL transaction
inside the ITracePlugin::trace_dsql_execute() method, similarly to how it should
have been handled for the trace_dsql_prepare() method of the same interface.

Tracker ticket CORE-6469

Ability to retrieve next attachment ID and next statement ID

Counters representing next attachment ID and next statement ID are now surfaced via the
MON$DATABASE table and Attachment::getInfo() API call.

For full details, see Monitoring in the Monitoring & Command-line Utilities chapter and
Extensions to various getInfo() Methods in the Changes to the Firebird API and ODS chapter.

Tracker ticket CORE-6300

SQL standard syntax for timezone offsets

Timezone offset in timestamp/time literal, CAST, SET TIME ZONE and AT TIME ZONE now follows SQL
standard syntax only.

Tracker ticket CORE-6429

No -pidfile option anymore

PIDFile/-pidfile directive/option has been removed from Firebird Super(Server/Classic) systemd
unit.

Tracker ticket CORE-6413

Time zone displacement in configuration

Usage of time zone displacement is now allowed in configuration setting DefaultTimeZone.

Tracker ticket CORE-6395

Better dependency tracking when installing Firebird on Linux

Presence of tomcrypt & curses libraries is now checked before installing Firebird.

Tracker ticket CORE-6366

INT128 as a dedicated data type

INT128 data type has been added as explicit basic type for high precision numerics.

Tracker ticket CORE-6342

Chapter 2. New In Firebird 4.0

10

http://tracker.firebirdsql.org/browse/CORE-6474
http://tracker.firebirdsql.org/browse/CORE-6469
http://tracker.firebirdsql.org/browse/CORE-6300
http://tracker.firebirdsql.org/browse/CORE-6429
http://tracker.firebirdsql.org/browse/CORE-6413
http://tracker.firebirdsql.org/browse/CORE-6395
http://tracker.firebirdsql.org/browse/CORE-6366
http://tracker.firebirdsql.org/browse/CORE-6342

API cleanup

Util methods that return interface pointers by legacy handle are replaced with plain C
functions.

Tracker ticket CORE-6320

Ability to update the supported time zones

Now it’s possible to update list of time zones (names and ids) without source code recompilation.

Tracker ticket CORE-6308

Support for nbackup -fixup via Services API

Allow to fixup (nbackup) a database using Services API

Tracker ticket CORE-5085

Better error reporting for user management commands

Explicit message about missing password is now raised for CREATE [OR ALTER] USER statements.

Tracker ticket CORE-4841

Improved sorting performance

Sorting performance has been improved for cases when long VARCHARs are involved.

Tracker ticket CORE-2650

Complete In Beta 2

SET BIND OF "type1" TO "type2" statement

New session-management statement SET BIND defines data type coercion rules between server-
side and client-side data types.

For full details, see SET BIND Statement in the Management Statements chapter.

Tracker ticket CORE-6287.

SQL-level replication management

ALTER DATABASE and CREATE/ALTER TABLE statements are extended to allow SQL-level management
for the replicated table set and current replication state. For details, see Replication
Management in the Data Definition Language chapter.

Tracker ticket CORE-6285.

FLOAT datatype is now SQL standard compliant

FLOAT(p) definition is changed to represent precision in binary digits (as defined by the SQL
specification) rather than in decimal digits as before. For details, see Standard Compliance for
Data Type FLOAT in the Data Definition Language chapter.

Tracker ticket CORE-6109.

Chapter 2. New In Firebird 4.0

11

http://tracker.firebirdsql.org/browse/CORE-6320
http://tracker.firebirdsql.org/browse/CORE-6308
http://tracker.firebirdsql.org/browse/CORE-5085
http://tracker.firebirdsql.org/browse/CORE-4841
http://tracker.firebirdsql.org/browse/CORE-2650
http://tracker.firebirdsql.org/browse/CORE-6287
http://tracker.firebirdsql.org/browse/CORE-6285
http://tracker.firebirdsql.org/browse/CORE-6109

Starting multiple transactions using the same initial transaction snapshot

SET TRANSACTION statement makes it possible to share the same transaction snapshot among
multiple transactions (possibly started by different attachments). For details, see Sharing
Transaction Snapshots in the Data Manipulation Language chapter.

Tracker ticket CORE-6018.

Better transaction control in ISQL

ISQL can now (optionally) remember the transaction parameters of the last started transaction
and reuse them for subsequent transactions. For details, see Keeping Transaction Parameters in
the Utilities chapter.

Tracker ticket CORE-4933.

Lateral derived tables

Support for SQL:2011 compliant lateral derived tables. For details, see Lateral Derived Tables in
the Data Manipulation Language chapter.

Tracker ticket CORE-3435.

Convenient usage of TIMESTAMP/TIME WITH TIME ZONE when appropriate ICU library is not
installed on the client side

In order to work with time zone names introduced with the new data types TIME WITH TIME ZONE
and TIMESTAMP WITH TIME ZONE, the Firebird client library provides API extensions that internally
use the ICU library. If the ICU library is missing (or has an incorrect version), the time value
would be represented in GMT which may be inconvinient.

To provide a better workaround to this issue, the so called EXTENDED format of the time zone
information has been introduced. It includes both time zone name and its corresponding GMT
offset. The GMT offset will be used as a fallback in the case of missing or mismatched ICU library.
For details see SET BIND Statement in the Management Statements chapter.

Tracker ticket CORE-6286.

Options in user management statements can be specified in arbitrary order

DDL statements CREATE USER, RECREATE USER, ALTER USER, ALTER CURRENT USER and CREATE OR ALTER
USER now allow their options (PASSWORD, FIRSTNAME, TAGS, etc) to be specified in arbitrary order.

Tracker ticket CORE-6279.

Efficient table scans for DBKEY-based range conditions

Range conditions (less-than and more-than) applied to a RDB$DB_KEY pseudo-column are now
executed using a range table scan instead of a full table scan, thus providing better performance
of such queries.

Tracker ticket CORE-6278.

Increased parsing speed of long queries

Stack growth increment inside the SQL parser has been increased to allow less memory

Chapter 2. New In Firebird 4.0

12

http://tracker.firebirdsql.org/browse/CORE-6018
http://tracker.firebirdsql.org/browse/CORE-4933
http://tracker.firebirdsql.org/browse/CORE-3435
http://tracker.firebirdsql.org/browse/CORE-6286
http://tracker.firebirdsql.org/browse/CORE-6279
http://tracker.firebirdsql.org/browse/CORE-6278

reallocations/copies and thus improve the parsing performance for long queries.

Tracker ticket CORE-6274.

API methods to set various names (field, relation, etc.) in the metadata builder

Methods setField(), setRelation(), setOwner(), setAlias() have been added to the
IMetadataBuilder interface of the Firebird API to set up the corresponding values for the given
API message.

Tracker ticket CORE-6268.

SUSPEND is prohibited in procedures and EXECUTE BLOCK without RETURNS

If a stored procedure or an EXECUTE BLOCK statement misses the RETURNS declaration (i.e. it has no
output paratemers), then the SUSPEND statement inside its body is prohibited and error
isc_suspend_without_returns is raised.

Tracker ticket CORE-6239.

Improve performance when using SRP plugin for authentication

Connections cache has been implemented inside the SRP authentication plugin to improve the
performance.

Tracker ticket CORE-6237.

Delivery of key known to the client to any database connection

It makes it possible to run standard utilities (like gfix) or service tasks against an encrypted
database on remote server in the cases when the database key is known to the client.

Tracker ticket CORE-6220.

Support for specials (inf/nan) when sorting DECFLOAT values

Special values (like INF/NaN) have been taken into account when sorting DECFLOAT values, the
output order is now consistent with their comparison rules.

Tracker ticket CORE-6219.

Extend trace record for COMMIT/ROLLBACK RETAINING to show old/new transaction IDs

COMMIT/ROLLBACK RETAINING statement preserves the current transaction context but generates a
new transaction ID. The trace output has been extended to show this new transaction ID in the
COMMIT_RETAINING and ROLLBACK_RETANING trace events and also show both initial and new
transaction IDs in every transaction identifier in the trace records.

Tracker ticket CORE-6095.

Show OS-specific error when entrypoint is not found in dynamic library

When the dynamic library loaded by the Firebird engine misses the required entrypoint, the
reported error now includes the OS-specific information.

Tracker ticket CORE-6069.

Chapter 2. New In Firebird 4.0

13

http://tracker.firebirdsql.org/browse/CORE-6274
http://tracker.firebirdsql.org/browse/CORE-6268
http://tracker.firebirdsql.org/browse/CORE-6239
http://tracker.firebirdsql.org/browse/CORE-6237
http://tracker.firebirdsql.org/browse/CORE-6220
http://tracker.firebirdsql.org/browse/CORE-6219
http://tracker.firebirdsql.org/browse/CORE-6095
http://tracker.firebirdsql.org/browse/CORE-6069

Change behavior of skipped and repeated wall times within time zones

Within time zones, some wall times do not exist (DST starting) or repeat twice (DST ending).
Firebird has been modified to handle these situations accordingly to the ECMAScript standard.
For example:

• 1:30 AM on November 5, 2017 in America/New_York is repeated twice (fall backward), but it
must be interpreted as 1:30 AM UTC-04 instead of 1:30 AM UTC-05.

• 2:30 AM on March 12, 2017 in America/New_York does not exist, but it must be interpreted as
2:30 AM UTC-05 (equivalent to 3:30 AM UTC-04).

Tracker ticket CORE-6058.

Built-in functions converting binary string to hexadecimal representation and vice versa

Functions HEX_ENCODE and HEX_DECODE have been added to convert between binary strings and
their hexadecimal representations. See HEX_ENCODE() and HEX_DECODE() for their description.

Tracker ticket CORE-6049.

Ability to see the current state of database encryption

Column MON$CRYPT_STATE has been added to the table MON$DATABASE. It has four possible states:

• 0 - not encrypted

• 1 - encrypted

• 2 - decryption is in progress

• 3 - encryption is in progress

Tracker ticket CORE-6048.

DPB properties for DECFLOAT configuration

New DPB items have been added to the API that can be used to set up the DECFLOAT properties for
the current attachment. See also Setting DECFLOAT Properties in the Management Statements
chapter.

Tracker ticket CORE-6032.

Transaction info item fb_info_tra_snapshot_number in the API

New TPB item fb_info_tra_snapshot_number has been added to the API that returns the snapshot
number of the current transaction.

Tracker ticket CORE-6017.

EXECUTE STATEMENT with excess parameters

Input parameters of EXECUTE STATEMENT command may be declared using the EXCESS prefix to
indicate that they can be missing in the query text. See Excess parameters in EXECUTE
STATEMENT in the Data Definition Language chapter for details.

Tracker ticket CORE-5658.

Chapter 2. New In Firebird 4.0

14

http://tracker.firebirdsql.org/browse/CORE-6058
http://tracker.firebirdsql.org/browse/CORE-6049
http://tracker.firebirdsql.org/browse/CORE-6048
http://tracker.firebirdsql.org/browse/CORE-6032
http://tracker.firebirdsql.org/browse/CORE-6017
http://tracker.firebirdsql.org/browse/CORE-5658

Ability to backup/restore only tables defined via a command line argument (pattern)

New command-line switch -INCLUDE_DATA has been added to gbak, see Ability to Backup/Restore
Only Specified Tables in the Utilities chapter.

Tracker ticket CORE-5538.

RECREATE USER statement

New DDL statement RECREATE USER has been added to drop and re-create the specified user in a
single step.

Tracker ticket CORE-4726.

Authenticate user in "EXECUTE STATEMENT ON EXTERNAL DATA SOURCE" by hash of the
current password

New sample plugin named ExtAuth has been added to the Firebird distribution package. It allows
to omit user name and password when calling EXECUTE STATEMENT against a trusted group of
servers sharing the same ExtAuth plugin and the key specific for that group. See
/firebird/examples/extauth/INSTALL for more details.

Tracker ticket CORE-3983.

Extended precision for numerics

Fixed point numerics with precision up to 38 digits are now supported, along with improved
intermediate calculations for shorter numerics. For details, see Increased Precision for NUMERIC
and DECIMAL Types in the Data Definition Language chapter.

Complete In Beta 1

Support for international time zones

International time zone support from Firebird 4.0 onward comprises data types, functions and
internal algorithms to manage date/time detection, storage and calculations involving
international time zones based on UTC (Adriano dos Santos Fernandes).

For full details, see Support for International Time Zones in the Engine chapter.

Tracker tickets CORE-694 and CORE-909

Built-in replication

Built-in logical (row level) replication, both synchronous and asynchronous (Dmitry Yemanov &
Roman Simakov)

For details, see Firebird Replication in the Engine chapter.

Tracker ticket CORE-2021

New way to capture the database snapshot

Introducing a new methodology for the Firebird engine to capture the snapshots for retaining
the consistency of a transaction’s view of database state. The new approach enables read
consistency to be maintained for the life of a statement in READ COMMITTED transactions and

Chapter 2. New In Firebird 4.0

15

http://tracker.firebirdsql.org/browse/CORE-5538
http://tracker.firebirdsql.org/browse/CORE-4726
http://tracker.firebirdsql.org/browse/CORE-3983
http://tracker.firebirdsql.org/browse/CORE-694
http://tracker.firebirdsql.org/browse/CORE-909
http://tracker.firebirdsql.org/browse/CORE-2021

also allows more optimal garbage collection.

The changes are described in more detail in the topic Commit Order for Capturing the Database
Snapshot in the chapter Changes in the Firebird Engine.

Pooling of external connections

The external data source (EDS) subsystem has been augmented by a pool of external
connections. The pool retains unused external connections for a period to reduce unnecessary
overhead from frequent connections and disconnections by clients using the same connection
strings (Vlad Khorsun).

For details, see Pooling of External Connections in the Engine chapter.

Tracker ticket CORE-5990

Physical standby solution

Physical standby solution (incremental restore via nbackup).

The changes are described in more detail in the Utilities chapter in the topic nBackup: GUID-
based Backup and In-Place Merge.

Extended length of metadata identifiers

Metadata names longer than 31 bytes: new maximum length of object names is 63 characters.

The changes are described in more detail in the topic Extended Length for Object Names in the
chapter Data Definition Language.

Configurable time-outs

Timeout periods configurable for statements, transactions and connections.

The changes for statements and connections are described in more detail in the topic Timeouts
at Two levels in the chapter Changes in the Firebird Engine (Vlad Khorsun).

Tracker tickets CORE-658 and CORE-985

New DECFLOAT data type

The SQL:2016 standard-compliant high-precision numeric type DECFLOAT is introduced, along
with related operational functions. It is described in detail in the topic Data type DECFLOAT in
the chapter Data Definition Language.

Enhanced system privileges

Predefined system roles, administrative permissions.

The changes are described in more detail in the topic Enhanced System Privileges in the Security
chapter.

See also the Management Statements chapter for some background about what the new system
privileges are intended for.

Chapter 2. New In Firebird 4.0

16

http://tracker.firebirdsql.org/browse/CORE-5990
http://tracker.firebirdsql.org/browse/CORE-658
http://tracker.firebirdsql.org/browse/CORE-985

GRANT ROLE TO ROLE

Granting roles to other roles, described in detail in the topic Granting a Role to Another Role in
the Security chapter.

User groups

User groups and cumulative permissions are described in detail in the topic Granting a Role to
Another Role in the Security chapter.

Batch operations in the API

Batch API operations, bulk load optimizations, support for passing BLOBs in-line.

Tracker ticket CORE-820

For details, see Support for Batch Insert and Update Operations in the API.

Window functions extensions

Extensions to window functions are described in detail in the Data Manipulation Language
chapter in the topics Frames for Window Functions, Named Windows and More Window
Functions.

FILTER Clause for Aggregate Functions

FILTER clause implemented for aggregate functions, see FILTER Clause for Aggregate Functions
in the Data Manipulation Language chapter.

Tracker ticket CORE-5768

Enhanced RETURNING clause in DML to enable returning all current field values

Introduces the RETURNING * syntax, and variants, to return a complete set of field values after
committing a row that has been inserted, updated or deleted (Adriano dos Santos Fernandes).
For details, see RETURNING * Now Supported in the Data Manipulation Language chapter.

Tracker ticket CORE-3808

Built-in functions FIRST_DAY and LAST_DAY

New date/time functions FIRST_DAY and LAST_DAY, see Two New Date/Time Functions in the Data
Manipulation Language chapter.

Tracker ticket CORE-5620

Built-in Cryptographic functions

New security-related functions, including eight cryptographic ones, see Built-in Cryptographic
Functions in the Security chapter.

Tracker ticket CORE-5970

Monitoring Compression and Encryption Status of Attachments

Compression and encryption status of a connection are now available in the monitoring table
MON$ATTACHMENTS:

Chapter 2. New In Firebird 4.0

17

http://tracker.firebirdsql.org/browse/CORE-820
http://tracker.firebirdsql.org/browse/CORE-5768
http://tracker.firebirdsql.org/browse/CORE-3808
http://tracker.firebirdsql.org/browse/CORE-5620
http://tracker.firebirdsql.org/browse/CORE-5970

• MON$WIRE_COMPRESSED (wire compression enabled = 1, disabled = 0)

• MON$WIRE_ENCRYPTED (wire encryption enabled = 1, disabled = 0)

Tracker ticket CORE-5536

Improve performance of gbak restore

The new Batch API was used to improve the performance of gbak restore, including parallel
operations.

Tracker tickets CORE-2992 and CORE-5952

Backup and Restore with Encryption

Support for backing up and restoring encrypted databases using the crypt and keyholder plug-
ins — see Backup and Restore with Encryption in the Utilities chapter.

Also available is compression and decompression of both encrypted and non-encrypted
backups.

Compatibility with Older Versions

Notes about compatibility with older Firebird versions are collated in the “Compatibility Issues”
chapter.

Chapter 2. New In Firebird 4.0

18

http://tracker.firebirdsql.org/browse/CORE-5536
http://tracker.firebirdsql.org/browse/CORE-2992
http://tracker.firebirdsql.org/browse/CORE-5952

Chapter 3. Changes in the Firebird Engine
The Firebird engine, version 4, presents no radical changes in architecture or operation.
Improvements and enhancements continue, including a doubling of the maximum database page
size and the long-awaited ability to impose timeouts on connections and statements that could be
troublesome, primary-replica replication and international time zone support.

Firebird 4 creates databases with the on-disk structure numbered 13 — “ODS 13”. The remote
interface protocol number is 16.

Maximum Page Size Increased To 32KB
Dmitry Yemanov

Tracker ticket CORE-2192

The maximum page size for databases created under ODS 13 has been increased from 16 KB to 32
KB.

External Functions (UDFs) Feature Deprecated
The original design of external functions (UDF) support has always been a source of security
problems. The most dangerous security holes, that occurred when UDFs and external tables were
used simultaneously, were fixed as far back as Firebird 1.5. Nevertheless, UDFs have continued to
present vulnerability issues like server crashes and the potential to execute arbitrary code.

The use of UDFs has been aggressively deprecated in Firebird 4:

• The default setting for the configuration parameter UdfAccess is NONE. In order to run UDFs at all
will now require an explicit configuration of Restrict UDF

• The UDF libraries (ib_udf, fbudf) are no longer distributed in the installation kits

• Most of the functions in the libraries previously distributed in the shared (dynamic) libraries
ib_udf and fbudf had already been replaced with built-in functional analogs. A few remaining
UDFs have been replaced with either analog routines in a new library of UDRs named
udf_compat or converted to stored functions.

Refer to Deprecation of External Functions (UDFs) in the Compatibility chapter for details and
instructions about upgrading to use the safe functions.

• Replacement of UDFs with UDRs or stored functions is strongly recommended

Support for International Time Zones
Adriano dos Santos Fernandes

Tracker tickets CORE-909 and CORE-694

Chapter 3. Changes in the Firebird Engine

19

http://tracker.firebirdsql.org/browse/CORE-2192
http://tracker.firebirdsql.org/browse/CORE-909
http://tracker.firebirdsql.org/browse/CORE-694

Time zone support from Firebird 4.0 onward consists of

• data types TIME WITH TIME ZONE and TIMESTAMP WITH TIME ZONE; implicitly also TIME WITHOUT TIME
ZONE and TIMESTAMP WITHOUT TIME ZONE as aliases for the existing types TIME and TIMESTAMP

• expressions and statements to work with time zones

• conversion between data types without/with time zones

The data types TIME WITHOUT TIME ZONE, TIMESTAMP WITHOUT TIME ZONE and DATE are
defined to use the session time zone when converting from or to a TIME WITH TIME
ZONE or TIMESTAMP WITH TIME ZONE. TIME and TIMESTAMP are synonymous to their
respective WITHOUT TIME ZONE data types.

Session Time Zone

As the name implies, the session time zone, can be different for each database attachment. It can be
set explicitly in the DPB or SPB with the item isc_dpb_session_time_zone; otherwise, by default, it
uses the same time zone as the operating system of the Firebird server process. This default can be
overridden in firebird.conf, see DefaultTimeZone setting in the Configuration Additions and
Changes chapter.

Subsequently, the time zone can be changed to a given time zone using a SET TIME ZONE statement or
reset to its original value with SET TIME ZONE LOCAL.

Time Zone Format

A time zone is a string, either a time zone region (for example, 'America/Sao_Paulo') or a
displacement from GMT in hours:minutes (for example, '-03:00').

A time/timestamp with time zone is considered equal to another time/timestamp with time zone if
their conversions to UTC are equivalent. For example, time '10:00 -02:00' and time '09:00 -03:00'
are equivalent, since both are the same as time '12:00 GMT'.

 The same equivalence applies in UNIQUE constraints and for sorting purposes.

Data Types for Time Zone Support

The syntax for declaring the data types TIMESTAMP and TIME has been extended to include arguments
defining whether the field should be defined with or without time zone adjustments, i.e.,

TIME [{ WITHOUT | WITH } TIME ZONE]

TIMESTAMP [{ WITHOUT | WITH } TIME ZONE]

The default for both TIME and TIMESTAMP is WITHOUT TIME ZONE. For more details, see Data Type
Extensions for Time Zone Support in the Data Definition Language chapter.

Chapter 3. Changes in the Firebird Engine

20

API Support for Time Zones

• Structures (structs)

• Functions

Time Zone Statements and Expressions

Additions and enhancements to syntax in DDL and DML are listed in this section. Follow the links
indicated to the details in the DDL and DML chapters.

Statement SET TIME ZONE

Changes the session time zone

Expression AT

Translates a time/timestamp value to its corresponding value in another time zone

Expression EXTRACT

Two new arguments have been added to the EXTRACT expression: TIMEZONE_HOUR and
TIMEZONE_MINUTE to extract the time zone hours displacement and time zone minutes
displacement, respectively.

Expression LOCALTIME

Returns the current time as a TIME WITHOUT TIME ZONE, i.e., in the session time zone

Expression LOCALTIMESTAMP

Returns the current timestamp as a TIMESTAMP WITHOUT TIME ZONE, i.e., in the session time zone

Expressions CURRENT_TIME and CURRENT_TIMESTAMP

In version 4.0, CURRENT_TIME and CURRENT_TIMESTAMP now return TIME WITH TIME ZONE and
TIMESTAMP WITH TIME ZONE, with the time zone set by the session time zone

Virtual table RDB$TIME_ZONES

A virtual table listing time zones supported in the engine. Columns:

• RDB$TIME_ZONE_ID type INTEGER

• RDB$TIME_ZONE_NAME type CHAR(63)

Package RDB$TIME_ZONE_UTIL

A package of time zone utility functions and procedures:

Function DATABASE_VERSION

RDB$TIME_ZONE_UTIL.DATABASE_VERSION returns the version of the time zone database as a VARCHAR(10)
CHARACTER SET ASCII.

Example

Chapter 3. Changes in the Firebird Engine

21

select rdb$time_zone_util.database_version() from rdb$database;

Returns:

DATABASE_VERSION
================
2020d

Procedure TRANSITIONS

RDB$TIME_ZONE_UTIL.TRANSITIONS returns the set of rules between the start and end timestamps.

The input parameters are:

• RDB$TIME_ZONE_NAME type CHAR(63)

• RDB$FROM_TIMESTAMP type TIMESTAMP WITH TIME ZONE

• RDB$TO_TIMESTAMP type TIMESTAMP WITH TIME ZONE

Output parameters:

RDB$START_TIMESTAMP

type TIMESTAMP WITH TIME ZONE — The start timestamp of the transition

RDB$END_TIMESTAMP

type TIMESTAMP WITH TIME ZONE — The end timestamp of the transition

RDB$ZONE_OFFSET

type SMALLINT — The zone’s offset, in minutes

RDB$DST_OFFSET

type SMALLINT — The zone’s DST offset, in minutes

RDB$EFFECTIVE_OFFSET

type SMALLINT — Effective offset (ZONE_OFFSET + DST_OFFSET)

Example

select *
 from rdb$time_zone_util.transitions(
 'America/Sao_Paulo',
 timestamp '2017-01-01',
 timestamp '2019-01-01');

Returns (RDB$ prefix left off for brevity):

Chapter 3. Changes in the Firebird Engine

22

 START_TIMESTAMP END_TIMESTAMP ZONE_OFFSET DST_OFFSET
EFFECTIVE_OFFSET
============================ ============================ =========== ==========
================
2016-10-16 03:00:00.0000 GMT 2017-02-19 01:59:59.9999 GMT -180 60
-120
2017-02-19 02:00:00.0000 GMT 2017-10-15 02:59:59.9999 GMT -180 0
-180
2017-10-15 03:00:00.0000 GMT 2018-02-18 01:59:59.9999 GMT -180 60
-120
2018-02-18 02:00:00.0000 GMT 2018-10-21 02:59:59.9999 GMT -180 0
-180
2018-10-21 03:00:00.0000 GMT 2019-02-17 01:59:59.9999 GMT -180 60
-120

Updating the Time Zone Database

Time zones are often changed: of course, when it happens, it is desirable to update the time zone
database as soon as possible.

Firebird stores WITH TIME ZONE values translated to UTC time. Suppose a value is created with one
time zone database and a later update of that database changes the information in the range of our
stored value. When that value is read, it will be returned as different to the value that was stored
initially.

Firebird uses the IANA time zone database through the ICU library. The ICU library presented in the
Firebird kit (Windows), or installed in a POSIX operating system, can sometimes have an outdated
time zone database.

An updated database can be found on this page on the FirebirdSQL GitHub. Filename le.zip stands
for little-endian and is the necessary file for most computer architectures (Intel/AMD compatible
x86 or x64), while be.zip stands for big-endian architectures and is necessary mostly for RISC
computer architectures. The content of the zip file must be extracted in the /tzdata sub-directory of
the Firebird installation, overwriting existing *.res files belonging to the database.

/tzdata is the default directory where Firebird looks for the time zone database. It
can be overridden with the ICU_TIMEZONE_FILES_DIR environment variable.

Firebird Replication
Dmitry Yemanov; Roman Simakov

Tracker ticket CORE-2021

Firebird 4 introduces built-in support for uni-directional (“primary-replica”) logical replication.
Logical here means record-level replication, as opposed to physical (page-level) replication.
Implementation is primarily directed towards providing for high availability, but it can be used for
other tasks as well.

Chapter 3. Changes in the Firebird Engine

23

https://www.iana.org/time-zones
https://github.com/FirebirdSQL/firebird/tree/master/extern/icu/tzdata
http://tracker.firebirdsql.org/browse/CORE-2021

Events that are tracked for replication include

• inserted/updated/deleted records

• sequence changes

• DDL statements

Replication is transactional and commit order is preserved. Replication can track changes either in
all tables, or in a customized subset of tables. Any table that is to be replicated must have a primary
key or, at least, a unique key.

Replication Modes

Both synchronous and asynchronous modes are available.

Synchronous Mode

In synchronous replication, the primary (master) database is permanently connected to the replica
(slave) database(s) and changes are replicated immediately. Effectively the databases are in sync
after every commit, which could have an impact on performance due to additional network traffic
and round-trips.

Although some recent uncommitted changes may be buffered, they are not
transmitted until committed.

More than one synchronous replica can be configured, if necessary.

Asynchronous Mode

In asynchronous replication, changes are written into local journal files that are transferred over
the wire and applied to the replica database. The impact on performance is much lower, but
imposes a delay — replication lag — while changes wait to be applied to the replica database; i.e. the
replica database is always “catching up” the master database.

Access Modes

There are two access modes for replica databases: read-only and read-write.

• With a read-only replica, only queries that do not modify data are allowed. Modifications are
limited to the replication process only.

 Global temporary tables can be modified, as they are not replicated.

• A read-write replica allows execution of any query. In this access mode, potential conflicts must
be resolved by users or database administrators.

Journaling

Asynchronous replication is implemented with journaling. Replicated changes are written into the
journal which consists of multiple files, known as replication segments. The Firebird server writes

Chapter 3. Changes in the Firebird Engine

24

segments continuously, one after another. Every segment has a unique number which is generated
sequentially. This number, known as a segment sequence, is combined with the database UUID to
provide globally unique identification of journal segments. The global sequence counter is stored
inside the replicated database and is reset only when the database is restored from backup.

Segments are rotated regularly, a process that is controlled by either maximum segment size or
timeout. Both thresholds are configurable. Once the active segment reaches the threshold, it is
marked as “full” and writing switches to the next available segment.

Full segments are archived and then reused for subsequent writes. Archiving consists of copying
the segment in preparation for transferring it to the replica host and applying it there. Copying can
be done by the Firebird server itself or, alternatively, by a user-specified custom command.

On the replica side, journal segments are applied in the replication sequence order. The Firebird
server periodically scans for new segments appearing in the configured directory. Once the next
segment is found, it gets replicated. For each replication source, the replication state is stored in a
local file named for the UUID and the replication source. It contains markers for

• latest segment sequence (LSS)

• oldest segment sequence (OSS)

• a list of active transactions started between the OSS and the LSS

About the LSS and OSS

LSS refers to the last replicated segment. OSS refers to the segment that started the earliest
transaction that was incomplete at the time LSS was processed.

These markers control two things:

1. what segment must be replicated next and

2. when segment files can be safely deleted

Segments with numbers between the OSS and the LSS are preserved in case the journal needs
replaying after the replicator disconnects from the replica database; for example, due to a
replication error or an idle timeout.

If there are no active transactions pending and the LSS was processed without errors, all segments
up to and including the LSS are deleted.

If a critical error occurs, replication is temporarily suspended and will be retried after the timeout.

Error Reporting

All replication errors and warnings (such as detected conflicts) are written into the replication.log
file. It may also include detailed descriptions of the operations performed by the replicator.

Log file location

The replication.log file is stored in the Firebird log directory. By default, the
Firebird log directory is the root directory of the Firebird installation.

Chapter 3. Changes in the Firebird Engine

25

Setting Up Replication

Setup involves tasks on both the primary and replica sides.

Setting Up the Primary Side

Replication is configured using a single configuration file, replication.conf, on the host serving the
primary database. Both global and per-database settings are possible within the same file. The
available options are listed inside replication.conf, along with commented descriptions of each.

Per-database configurations

When configuring options at per-database level, the full database path must be
specified within the {database} section. Aliases and wildcards are not accepted.

Inside the database, replication should be enabled using the following DDL statement:

ALTER DATABASE ENABLE PUBLICATION

Defining a Custom Replication Set

Optionally, the replication set (aka publication) should be defined. It includes tables that should be
replicated. This is done using the following DDL statements:

-- to replicate all tables (including the ones created later)
ALTER DATABASE INCLUDE ALL TO PUBLICATION

-- to replicate specific tables
ALTER DATABASE INCLUDE TABLE T1, T2, T3 TO PUBLICATION

Tables may later be excluded from the replication set:

-- to disable replication of all tables (including the ones created later)
ALTER DATABASE EXCLUDE ALL FROM PUBLICATION

-- to disable replication of specific tables
ALTER DATABASE EXCLUDE TABLE T1, T2, T3 FROM PUBLICATION

Tables enabled for replication inside the database can be additionally filtered using two settings in
replication.conf: include_filter and exclude_filter. They are regular expressions that are applied
to table names, defining the rules for including or excluding them from the replication set. The
regular expression syntax used to match table names is the same as in SIMILAR TO Boolean
expressions.

Synchronous/Asynchronous Modes

Chapter 3. Changes in the Firebird Engine

26

Synchronous Mode

Synchronous replication can be turned on by setting the sync_replica specifying a connection
string to the replica database, prefixed with username and password. Multiple entries are
allowed.

In the SuperServer and SuperClassic architectures, the replica database is attached internally
when the first user gets connected to the primary database and is detached when the last user
disconnects from the primary database.

In the Classic Server architecture, each server process keeps its own active connection to the
replica database.

Asynchronous Mode

For asynchronous replication the journaling mechanism must be set up. The primary parameter
is journal_directory which defines location of the replication journal. Specifying this location
turns on asynchronous replication and tells the Firebird server to start producing the journal
segments.

A Minimal Configuration

A minimal primary-side configuration would look like this:

database = /data/mydb.fdb
{
 journal_directory = /dblogs/mydb/
 journal_archive_directory = /shiplogs/mydb/
}

Archiving is performed by the Firebird server copying the segments from /dblogs/mydb/ to
/shiplogs/mydb/.

The same setup, but with user-defined archiving:

database = /data/mydb.fdb
{
 journal_directory = /dblogs/mydb/
 journal_archive_directory = /shiplogs/mydb/
 journal_archive_command = "test ! -f $(archivepathname) && cp $(pathname)
$(archivepathname)"
}

 — where $(pathname) and $(archivepathname) are built-in macros that are expanded to full path
names when running the specified custom shell command.

Chapter 3. Changes in the Firebird Engine

27

About custom archiving

Custom archiving, through use of the setting journal_archive_command allows use of
any system shell command, including scripts or batch files, to deliver segments to
the replica side. It could use compression, FTP, or whatever else is available on the
server.

The actual transport implementation is up to the DBA: Firebird just produces
segments on the primary side and expects them to appear at the replica side. If the
replica storage can be remotely attached to the primary host, it becomes just a
matter of copying the segment files. In other cases, some transport solution is
required.

If custom archiving is used, the setting journal_archive_directory can be omitted,
unless journal_archive_command mentions the $(archivepathname) macro.

The same setup, with archiving performed every 10 seconds:

database = /data/mydb.fdb
{
 journal_directory = /dblogs/mydb/
 journal_archive_directory = /shiplogs/mydb/
 journal_archive_command = "test ! -f $(archivepathname) && cp $(pathname)
$(archivepathname)"
 journal_archive_timeout = 10
}

Read replication.conf for other possible settings.

Applying the Primary Side Settings

To take into effect changes applied to the primary-side settings, all users connected to a database
must be disconnected (or a database must be shutdown). After that, all users connected again
would use an updated configuration.

Setting Up the Replica Side

replication.conf file is also used for setting up the replica side. Setting the parameter
journal_source_directory specifies the location that the Firebird server scans for the transmitted
segments. In addition, the DBA may specify explicitly which source database is accepted for
replication, by setting the parameter source_guid.

A Sample Replica Setup

A configuration for a replica could looks like this:

Chapter 3. Changes in the Firebird Engine

28

database = /data/mydb.fdb
{
 journal_source_directory = /incominglogs/
 source_guid = {6F9619FF-8B86-D011-B42D-00CF4FC964FF}
}

Read replication.conf for other possible settings.

Applying the Replica Side Settings

To take into effect changes applied to replica-side settings, the Firebird server must be restarted.

Creating a Replica Database

Task 1 — Make the initial replica

Any physical copying method can be used to create an initial replica of the primary database:

• File-level copy while the Firebird server is shut down

• ALTER DATABASE BEGIN BACKUP + file-level copy + ALTER DATABASE END BACKUP

• nbackup -l + file-level copy + nbackup -n

• nbackup -b 0 + nbackup -f -seq

Task 2 — Activate the replica access mode

Activating the access mode — for the copied database involves the command-line utility gfix with
the new -replica switch and either read_only or read_write as the argument:

• To set the database copy as a read-only replica

gfix -replica read_only <database>

If the replica is read-only then only the replicator connection can modify the database. This is
mostly intended for high-availability solutions, as the replica database is guaranteed to match
the primary one and can be used for fast recovery. Regular user connections may perform any
operations allowed for read-only transactions: select from tables, execute read-only procedures,
write into global temporary tables, etc. Database maintenance such as sweeping, shutdown,
monitoring is also allowed.

A read-only replica can be useful for distributing read-only load, for example, analytics, away
from the master database.

Read-only connections have the potential to conflict with replication if DDL
statements that are performed on the master database are of the kind that
requires an exclusive lock on metadata.

• To set the database copy as a read-write replica

Chapter 3. Changes in the Firebird Engine

29

gfix -replica read_write <database>

Read-write replicas allow both the replicator connection and regular user connections to
modify the database concurrently. With this mode, there is no guarantee that the replica
database will be in sync with the master one. Therefore, use of a read-write replica for high
availability conditions is not recommended unless user connections on the replica side are
limited to modifying only tables that are excluded from replication.

Task 3 — Converting the replica to a regular database

A third gfix -replica argument is available for “switching off” replication to a read-write replica
when conditions call for replication flow to be discontinued for some reason. Typically, it would be
used to promote the replica to become the primary database after a failure; or to make physical
backup copies from the replica.

gfix -replica none <database>

Pooling of External Connections
Vlad Khorsun

Tracker ticket CORE-5990

To avoid delays when external connections are being established frequently, the external data
source (EDS) subsystem has been augmented by a pool of external connections. The pool retains
unused external connections for a period to reduce unnecessary overhead from frequent
connections and disconnections by clients using the same connection strings.

Key Characteristics of Connection Pooling

The implementation of connection pooling in Firebird 4 eliminates the problem of interminable
external connections by controlling and limiting the number of idle connections. The same pool is
used for all external connections to all databases and all local connections handled by a given
Firebird process. It supports a quick search of all pooled connections using four parameters,
described below in New Connections.

Chapter 3. Changes in the Firebird Engine

30

http://tracker.firebirdsql.org/browse/CORE-5990

Terminology

Two terms recur in the management of the connection pool, in configuration, by DDL ALTER
statements during run-time and in new context variables in the SYSTEM namespace:

Connection life time

The time interval allowed from the moment of the last usage of a connection to the
moment after which it will be forcibly closed. SQL parameter LIFETIME, configuration
parameter ExtConnPoolLifeTime, context variable EXT_CONN_POOL_LIFETIME.

Pool size

The maximum allowed number of idle connections in the pool. SQL parameter SIZE,
configuration parameter ExtConnPoolSize, context variable EXT_CONN_POOL_SIZE.

How the Connection Pool Works

Every successful connection is associated with a pool, which maintains two lists — one for idle
connections and one for active connections. When a connection in the “active” list has no active
requests and no active transactions, it is assumed to be “unused”. A reset of the unused connection
is attempted using an ALTER SESSION RESET statement and,

• if the reset succeeds (no errors occur) the connection is moved into the “idle” list;

• if the reset fails, the connection is closed;

• if the pool has reached its maximum size, the oldest idle connection is closed.

• When the lifetime of an idle connection expires, it is deleted from the pool and closed.

New Connections

When the engine is asked to create a new external connection, the pool first looks for a candidate in
the “idle” list. The search, which is case-sensitive, involves four parameters:

1. connection string

2. username

3. password

4. role

If suitable connection is found, it is tested to check that it is still alive.

• If it fails the check, it is deleted and the search is repeated, without reporting any error to the
client

• Otherwise, the live connection is moved from the “idle” list to the “active” list and returned to
the caller

• If there are multiple suitable connections, the most recently used one is chosen

• If there is no suitable connection, a new one is created and added to the “active” list.

Chapter 3. Changes in the Firebird Engine

31

Managing the Connection Pool

A new SQL statement has been introduced to manage the pool during run-time from any
connection, between Firebird restarts, i.e., changes made with ALTER EXTERNAL CONNECTIONS POOL are
not persistent.

This is the syntax pattern:

ALTER EXTERNAL CONNECTIONS POOL { <parameter variants> }

Syntax Variants Available

ALTER EXTERNAL CONNECTIONS POOL SET SIZE <int>

Sets the maximum number of idle connections

ALTER EXTERNAL CONNECTIONS POOL SET LIFETIME <int> <time_part>

Sets the lifetime of an idle connection, from 1 second to 24 hours. The <time_part> can be SECOND
| MINUTE | HOUR.

ALTER EXTERNAL CONNECTIONS POOL CLEAR ALL

Closes all idle connections and instigates dissociation of all active connections so they are
immediately closed when they become unused

ALTER EXTERNAL CONNECTIONS POOL CLEAR OLDEST

Closes expired idle connections

For a full descriptions and examples of the variants, see ALTER EXTERNAL CONNECTIONS POOL
Statement in the chapter Management Statements.

Querying the Connection Pool

The state of the external connections pool can be queried using a set of new context variables in the
'SYSTEM' namespace:

EXT_CONN_POOL_SIZE Pool size

EXT_CONN_POOL_LIFETIME Idle connection lifetime, in seconds

EXT_CONN_POOL_IDLE_COUNT Count of currently inactive connections

EXT_CONN_POOL_ACTIVE_COUNT Count of active connections associated with the pool

Parameters for Configuring the Connection Pool

Two new parameters, for firebird.conf only, are for configuring the connection pool at process
start. Follow the links for details.

Chapter 3. Changes in the Firebird Engine

32

ExtConnPoolSize

Configures the maximum number of idle connections allowed in the pool

ExtConnPoolLifetime

Configures the number of seconds a connection should stay available after it has gone idle

Timeouts at Two levels
Vlad Khorsun

Tracker ticket CORE-5488

Firebird 4 introduces configurable timeouts for running SQL statements and for idle connections
(sessions).

Idle Session Timeouts

An idle session timeout allows a user connection to close automatically after a specified period of
inactivity. A database administrator can use it to enforce closure of old connections that have
become inactive, to reduce unnecessary consumption of resources. It can also be used by
application and tools developers as an alternative to writing their own modules for controlling
connection lifetime.

By default, the idle timeout is not enabled. No minimum or maximum limit is imposed but a
reasonably large period, such as a few hours, is recommended.

How the Idle Session Timeout Works

• When the user API call leaves the engine (returns to the calling connection) a special idle timer
associated with the current connection is started

• When another user API call from that connection enters the engine, the idle timer is stopped
and reset to zero

• If the maximum idle time is exceeded, the engine immediately closes the connection in the same
way as with asynchronous connection cancellation:

◦ all active statements and cursors are closed

◦ all active transactions are rolled back

◦ The network connection remains open at this point, allowing the client application to get the
exact error code on the next API call. The network connection will be closed on the server
side, after an error is reported or in due course as a result of a network timeout from a
client-side disconnection.

Chapter 3. Changes in the Firebird Engine

33

http://tracker.firebirdsql.org/browse/CORE-5488

Whenever a connection is cancelled, the next user API call returns the error
isc_att_shutdown with a secondary error specifying the exact reason. Now, we have

isc_att_shut_idle

Idle timeout expired

in addition to

isc_att_shut_killed

Killed by database administrator

isc_att_shut_db_down

Database is shut down

isc_att_shut_engine

Engine is shut down

Setting the Idle Session Timeout

 The idle timer will not start if the timeout period is set to zero.

An idle session timeout can be set:

• At database level, the database administrator can set the configuration parameter
ConnectionIdleTimeout, an integer value in minutes. The default value of zero means no timeout
is set. It is configurable per-database, so it may be set globally in firebird.conf and overridden
for individual databases in databases.conf as required.

The scope of this method is all user connections, except system connections (garbage collector,
cache writer, etc.).

• at connection level, the idle session timeout is supported by both the API and a new SQL
statement syntax. The scope of this method is specific to the supplied connection (attachment).
Its value in the API is in seconds. In the SQL syntax it can be hours, minutes or seconds. Scope
for this method is the connection to which it is applied.

Determining the Timeout that is In Effect

The effective idle timeout value is determined whenever a user API call leaves the engine, checking
first at connection level and then at database level. A connection-level timeout can override the
value of a database-level setting, as long as the period of time for the connection-level setting is no
longer than any non-zero timeout that is applicable at database level.

Chapter 3. Changes in the Firebird Engine

34

Take note of the difference between the time units at each level. At database level,
in the conf file, the unit for SessionTimeout is minutes. In SQL, the default unit is
minutes but can be expressed in hours or seconds explicitly. At the API level, the
unit is seconds.

Absolute precision is not guaranteed in any case, especially when the system load
is high, but timeouts are guaranteed not to expire earlier than the moment
specified.

SQL Syntax for Setting an Idle Session Timeout

The statement for setting an idle timeout at connection level can run outside transaction control
and takes effect immediately. The syntax pattern is as follows:

SET SESSION IDLE TIMEOUT value [{ HOUR | MINUTE | SECOND }]

If the time unit is not set, it defaults to MINUTE.

Support at API Level

Get/set idle connection timeout, seconds

interface Attachment
 uint getIdleTimeout(Status status);
 void setIdleTimeout(Status status, uint timeOut);

The values of the idle connection timeout at both configuration and connection levels, along with
the current actual timeout, can be obtained using the isc_database_info() API with some new info
tags:

fb_info_ses_idle_timeout_db

Value set at config level

fb_info_ses_idle_timeout_att

Value set at given connection level

fb_info_ses_idle_timeout_run

Actual timeout value for the given connection, evaluated considering the values set at config and
connection levels, see Determining the Timeout that is In Effect above.

Chapter 3. Changes in the Firebird Engine

35

Notes regarding remote client implementation

1. Attachment::setIdleTimeout() issues a “SET SESSION IDLE TIMEOUT” SQL
statement

2. Attachment::getIdleTimeout() calls isc_database_info() with the
fb_info_ses_idle_timeout_att tag

3. If the protocol of the remote Firebird server is less than 16, it does not support
idle connection timeouts. If that is the case,

◦ Attachment::setIdleTimeout() will return the error isc_wish_list

◦ Attachment::getIdleTimeout() will return zero and set the isc_wish_list
error

◦ isc_database_info() will return the usual isc_info_error tag in the info
buffer

Context Variable Relating to Idle Session Timeouts

The 'SYSTEM' context has a new variable: SESSION_IDLE_TIMEOUT. It contains the current value of idle
connection timeout that was set at connection level, or zero, if no timeout was set.

Idle Session Timeouts in the Monitoring Tables

In MON$ATTACHMENTS:

MON$IDLE_TIMEOUT

Connection-level idle timeout

MON$IDLE_TIMER

Idle timer expiration time

MON$IDLE_TIMEOUT contains timeout value set at connection level, in seconds. Zero, if timeout is not
set.

MON$IDLE_TIMER contains NULL if an idle timeout was not set or if a timer is not running.

Statement Timeouts

The statement timeout feature allows execution of a statement to be stopped automatically when it
has been running longer than a given timeout period. It gives the database administrator an
instrument for limiting excessive resource consumption from heavy queries.

Statement timeouts can also be useful to application developers when creating and debugging
complex queries without advance knowledge of execution time. Testers and others could find them
handy for detecting long-running queries and establishing finite run times for test suites.

How the Statement Timeout Works

When the statement starts execution, or a cursor is opened, the engine starts a special timer. It is
stopped when the statement completes execution, or the last record has been fetched by the cursor.

Chapter 3. Changes in the Firebird Engine

36

 A fetch does not reset this timer.

When the timeout point is reached:

• if statement execution is active, it stops at closest possible moment

• if statement is not active currently (between fetches, for example), it is marked as cancelled,
and the next fetch will actually break execution and return an error

Statement types excluded from timeouts

Statement timeouts are not applicable to some types of statement and will simply
be ignored:

• All DDL statements

• All internal queries issued by the engine itself

Setting a Statement Timeout

 The timer will not start if the timeout period is set to zero.

A statement timeout can be set:

• at database level, by the database administrator, by setting the configuration parameter
StatementTimeout in firebird.conf or databases.conf. StatementTimeout is an integer representing
the number of seconds after which statement execution will be cancelled automatically by the
engine. Zero means no timeout is set. A non-zero setting will affect all statements in all
connections.

• at connection level, using the API and/or the new SQL statement syntax for setting a statement
timeout. A connection-level setting (via SQL or the API) affects all statements for the given
connection; units for the timeout period at this level can be specified to any granularity from
hours to milliseconds.

• at statement level, using the API, in milliseconds

Determining the Statement Timeout that is In Effect

The statement timeout value that is in effect is determined whenever a statement starts executing,
or a cursor is opened. In searching out the timeout in effect, the engine goes up through the levels,
from statement through to database and/or global levels until it finds a non-zero value. If the value
in effect turns out to be zero then no statement timer is running and no timeout applies.

A statement-level or connection-level timeout can override the value of a database-level setting, as
long as the period of time for the lower-level setting is no longer than any non-zero timeout that is
applicable at database level.

Chapter 3. Changes in the Firebird Engine

37

Take note of the difference between the time units at each level. At database level,
in the conf file, the unit for StatementTimeout is seconds. In SQL, the default unit is
seconds but can be expressed in hours, minutes or milliseconds explicitly. At the
API level, the unit is milliseconds.

Absolute precision is not guaranteed in any case, especially when the system load
is high, but timeouts are guaranteed not to expire earlier than the moment
specified.

Whenever a statement times out and is cancelled, the next user API call returns the error
isc_cancelled with a secondary error specifying the exact reason, viz.,

isc_cfg_stmt_timeout

Config level timeout expired

isc_att_stmt_timeout

Attachment level timeout expired

isc_req_stmt_timeout

Statement level timeout expired

Notes about Statement Timeouts

1. A client application could wait longer than the time set by the timeout value if the engine needs
to undo a large number of actions as a result of the statement cancellation

2. When the engine runs an EXECUTE STATEMENT statement, it passes the remainder of the currently
active timeout to the new statement. If the external (remote) engine does not support statement
timeouts, the local engine silently ignores any corresponding error.

3. When the engine acquires some lock from the lock manager, it tries to lower the value of the
lock timeout using the remainder of the currently active statement timeout, if possible. Due to
lock manager internals, any statement timeout remainder will be rounded up to whole seconds.

SQL Syntax for Setting a Statement Timeout

The statement for setting a statement execution timeout at connection level can run outside
transaction control and takes effect immediately. The statement syntax pattern is:

SET STATEMENT TIMEOUT value [{ HOUR | MINUTE | SECOND | MILLISECOND }]

If the time part unit is not set, it defaults to SECOND.

Support for Statement Timeouts at API Level

statement execution timeout at connection level, milliseconds:

Chapter 3. Changes in the Firebird Engine

38

interface Attachment
 uint getStatementTimeout(Status status);
 void setStatementTimeout(Status status, uint timeOut);

Get\set statement execution timeout at statement level, milliseconds:

interface Statement
 uint getTimeout(Status status);
 void setTimeout(Status status, uint timeOut);

Set statement execution timeout at statement level using ISC API, milliseconds:

ISC_STATUS ISC_EXPORT fb_dsql_set_timeout(ISC_STATUS*, isc_stmt_handle*, ISC_ULONG);

Getting the statement execution timeout at config and/or connection levels can be done using the
isc_database_info() API function with some new info tags:

• fb_info_statement_timeout_db

• fb_info_statement_timeout_att

Getting the statement execution timeout at statement level can be done using the isc_dsql_info()
API function with some new info tags:

isc_info_sql_stmt_timeout_user

Timeout value of given statement

isc_info_sql_stmt_timeout_run

Actual timeout value of given statement. Valid only for statements currently executing, i.e., when
a timeout timer is actually running. Evaluated considering the values set at config, connection
and statement levels, see Determining the Statement Timeout that is In Effect above.

Chapter 3. Changes in the Firebird Engine

39

Notes regarding remote client implementation

1. Attachment::setStatementTimeout() issues a “SET STATEMENT TIMEOUT” SQL
statement

2. Attachment::getStatementTimeout() calls isc_database_info() with the
fb_info_statement_timeout_att tag

3. Statement::setTimeout() saves the given timeout value and passes it with
op_execute and op_execute2 packets

4. Statement::getTimeout() returns the saved timeout value

5. fb_dsql_set_timeout() is a wrapper over Statement::setTimeout()

6. If the protocol of the remote Firebird server is less than 16, it does not support
statement timeouts. If that is the case,

◦ “set” and “get” functions will return an isc_wish_list error

◦ “info” will return the usual isc_info_error tag in the info buffer

Context Variable relating to Statement Timeouts

The 'SYSTEM' context has a new variable: STATEMENT_TIMEOUT. It contains the current value of the
statement execution timeout that was set at connection level, or zero, if no timeout was set.

Statement Timeouts in the Monitoring Tables

In MON$ATTACHMENTS:

MON$STATEMENT_TIMEOUT Connection-level statement timeout

In MON$STATEMENTS:

MON$STATEMENT_TIMEOUT Statement-level statement timeout

MON$STATEMENT_TIMER Timeout timer expiration time

MON$STATEMENT_TIMEOUT contains timeout value set at connection or statement level, in milliseconds.
Zero, if timeout is not set.

MON$STATEMENT_TIMER contains NULL if no timeout was set or if a timer is not running.

Support for Statement Timeouts in isql

A new command has been introduced in isql to enable an execution timeout in milliseconds to be
set for the next statement. The syntax is:

SET LOCAL_TIMEOUT int-value

After statement execution, the timeout is automatically reset to zero.

Chapter 3. Changes in the Firebird Engine

40

Commit Order for Capturing the Database Snapshot
Nickolay Samofatov; Roman Simakov; Vlad Khorsun

Tracker ticket CORE-5953

Traditionally, a SNAPSHOT (“concurrency”) transaction takes a private copy of the transaction
inventory page (TIP) at its start and uses it to refer to the state of the latest committed versions of all
records in the database, right up until it commits or rolls back its own changes. Thus, by definition,
a SNAPSHOT transaction sees the database state only as it was at the moment it started.

In the traditional model, a READ COMMITTED transaction does not use a stable snapshot view of
database state and does not keep a private copy of the TIP. Instead, it asks the TIP for the most
recent state of a record committed by another transaction. In Super (“SuperServer”) mode, the TIP
cache is shared to provide optimal access to it by READ COMMITTED transactions.

The 'Commit Order' Approach

Firebird 4 takes a new approach to establishing a consistent view of the database state visible to
running transactions. This new approach uses the concept of commit order.

It is sufficient to know the order of commits in order to capture the state of any transaction at the
moment when a snapshot is created.

Commit Order for Transactions

The elements for establishing and utilising commit order are:

• Initialize a Commit Number (CN) for each database when the database is first opened

• Each time a transaction is committed, the Commit Number for that database is incremented and
the new CN is associated with the specific transaction

• This specific transaction and commit number combination — “transaction CN” are stored in
memory and can be queried subsequently while the database remains active

• A database snapshot is identified by the value stored for the global CN at moment when the
database snapshot was created

Special Values for the Transaction CN

Possible values for the transaction Commit Number include some special CN values that signify
whether the transaction is active or dead, viz.:

CN_ACTIVE = 0

Transaction is active

CN_PREHISTORIC = 1

Transaction was committed before the database started (i.e., older than OIT)

Chapter 3. Changes in the Firebird Engine

41

http://tracker.firebirdsql.org/browse/CORE-5953

CN_PREHISTORIC < CN < CN_DEAD

Transaction was committed while the database was working

CN_DEAD = MAX_TRA_NUM - 2

Dead transaction

CN_LIMBO = MAX_TRA_NUM - 1

Transaction is in limbo

The Rule for Record Visibility

Supposing database snapshot is the current snapshot in use by the current transaction and other
transaction is the transaction that created the given record version, the rule for determining the
visibility of the record version works like this:

• If the state of other transaction is 'active', 'dead' or 'in limbo' then the given record version is not
visible to the current transaction

• If the state of other transaction is 'committed' then the visibility of the given record version
depends on the timing of the creation of database snapshot, so

◦ if it was committed before database snapshot was created, it is visible to the current
transaction;

◦ if it was committed after database snapshot was created, it is not visible to the current
transaction.

Thus, as long as a maintained list of all known transactions with their associated Commit Numbers
is in existence, it is enough to compare the CN of other transaction with the CN of database snapshot
to decide whether the given record version should be visible within the scope of database snapshot.

The status of an association between a transaction and its CN can be queried using
a new built-in function, RDB$GET_TRANSACTION_CN.

SNAPSHOT transactions now use the database snapshot described above. Instead of taking a private
copy of TIP when started it just remembers value of global Commit Number at that moment.

Implementation details

The list of all known transactions with associated Commit Numbers is maintained in shared
memory. It is implemented as an array whose index is a transaction ID and its item value is the
corresponding Commit Number.

The whole array is split into fixed-size blocks containing the CN’s for all transactions between the
OIT and Next Transaction markers. When Next Transaction moves out of the scope of the highest
block, a new block is allocated. An old block is released when the OIT moves out of the scope of the
lowest block.

Block Size

The default size of a TIP cache block is 4MB, providing capacity for 512 * 1024 transactions. It is

Chapter 3. Changes in the Firebird Engine

42

configurable in firebird.conf and databases.conf using the new parameter TipCacheBlockSize.

Read Consistency for Statements in Read-Committed Transactions

The existing implementation of READ COMMITTED isolation for transactions suffers from an
important problem: a single statement, such as a SELECT, could see different views of the same data
during execution.

For example, imagine two concurrent transactions, where the first inserts 1000 rows and commits,
while the second runs SELECT COUNT(*) over the same table.

If the isolation level of the second transaction is READ COMMITTED, its result is hard to predict. It
could be any of:

1. the number of rows in the table before the first transaction started, or

2. the number of rows in the table after the first transaction committed, or

3. any number between those two numbers.

Which of those results is actually returned depends on how the two transactions interact:

• CASE 1 would occur if the second transaction finished counting before the first transaction was
committed, since the uncommitted inserts at that point are visible only to the first transaction.

• CASE 2 would occur if the second transaction started after the first had committed all of the
inserts.

• CASE 3 occurs in any other combination of the conditions: the second transaction sees some, but
not all, of the inserts during the commit sequence of the first transaction.

CASE 3 is the problem referred to as inconsistent read at the statement level. It matters because, by
definition, each statement in a READ COMMITTED transaction has its own distinct view of database
state. In the existing implementation, the statement’s view is not certain to remain stable for the
duration of its execution: it could change between the start of execution and the completion.

Statements running in a SNAPSHOT transaction do not have this problem, since every statement
runs against a consistent view of database state. Also, different statements that run within the same
READ COMMITTED transaction could see different views of database state but this is “as designed”
and is not a source of statement-level inconsistency.

Solving the Inconsistent Read Problem

See Tracker ticket CORE-5954.

The obvious solution to the inconsistent read problem is to have the read-committed transaction
use a stable database snapshot during execution of a statement. Each new top-level statement
creates its own database snapshot that sees the most recently committed data. With snapshots
based on commit order, this is a very cheap operation. Let this snapshot be called a statement-level
snapshot for further references. Nested statements (triggers, nested stored procedures and
functions, dynamic statements, etc.) use the same statement-level snapshot that was created by the
top-level statement.

Chapter 3. Changes in the Firebird Engine

43

http://tracker.firebirdsql.org/browse/CORE-5954

New Isolation Sub-Level for READ COMMITTED

A new sub-level for transactions in READ COMMITTED isolation is introduced: READ COMMITTED
READ CONSISTENCY.

The existing sub-levels for READ COMMITTED isolation, namely RECORD VERSION and NO RECORD
VERSION, are still supported and operate as before (without using statement-level snapshots), but
they are now deprecated and may be removed in future Firebird versions.

In summary, the three variants for transactions in READ COMMITTED isolation are now:

• READ COMMITTED READ CONSISTENCY

• READ COMMITTED NO RECORD VERSION

• READ COMMITTED RECORD VERSION

Handling of Update Conflicts

When a statement executes in a READ COMMITTED READ CONSISTENCY transaction, its database
view is retained in a fashion similar to a SNAPSHOT transaction. This makes it pointless to wait for
the concurrent transaction to commit, in the hope of being able to read the newly-committed
record version. So, when a READ COMMITTED READ CONSISTENCY transaction reads data, it
behaves similarly to READ COMMITTED RECORD VERSION transaction: walks the back versions
chain looking for a record version visible to the current snapshot.

When an update conflict occurs, the behaviour of a READ COMMITTED READ CONSISTENCY
transaction is different to that of one in READ COMMITTED RECORD VERSION. The following
actions are performed:

1. Transaction isolation mode is temporarily switched to READ COMMITTED NO RECORD
VERSION.

2. A write-lock is taken for the conflicting record.

3. Remaining records of the current UPDATE/DELETE cursor are processed, and they are write-locked
too.

4. Once the cursor is fetched, all modifications performed since the top-level statement was
started are undone, already taken write-locks for every updated/deleted/locked record are
preserved, all inserted records are removed.

5. Transaction isolation mode is restored to READ COMMITTED READ CONSISTENCY, new
statement-level snapshot is created, and the top-level statement is restarted.

This algorithm ensures that already updated records remain locked after restart, they are visible to
the new snapshot, and could be updated again with no further conflicts. Also, due to READ
CONSISTENCY nature, the modified record set remains consistent.

Chapter 3. Changes in the Firebird Engine

44

Notes

• This restart algorithm is applied to UPDATE, DELETE, SELECT WITH LOCK and MERGE
statements, with or without the RETURNING clause, executed directly by a client
application or inside some PSQL object (stored procedure/function, trigger,
EXECUTE BLOCK, etc).

• If an UPDATE/DELETE statement is positioned on some explicit cursor (using the
WHERE CURRENT OF clause), then the step (3) above is skipped, i.e. remaining
cursor records are not fetched and write-locked.

• If the top-level statement is selectable and update conflict happens after one or
more records were returned to the client side, then an update conflict error is
reported as usual and restart is not initiated.

• Restart does not happen for statements executed inside autonomous blocks (IN
AUTONOMOUS TRANSACTION DO …).

• After 10 unsuccessful attempts the restart algorithm is aborted, all write locks
are released, transaction isolation mode is restored to READ COMMITTED
READ CONSISTENCY, and an update conflict error is raised.

• Any error not handled at step (3) above aborts the restart algorithm and
statement execution continues normally.

• UPDATE/DELETE triggers fire multiple times for the same record if the statement
execution was restarted and record is updated/deleted again.

• Statement restart is usually fully transparent to client applications and no
special actions should be taken by developers to handle it in any way. The only
exception is the code with side effects that are outside the transactional
control, for example:

◦ usage of external tables, sequences or context variables

◦ sending e-mails using UDF

◦ usage of autonomous transactions or external queries

and so on. Beware that such code could be executed more than once if update
conflict happens.

• There is no way to detect whether a restart happened, but it could be done
manually using code with side effects as described above, for example using a
context variable.

• Due to historical reasons, error isc_update_conflict is reported as the secondary
error code, with the primary error code being isc_deadlock.

Read Committed Read-Only Transactions

In the existing implementation, READ COMMITTED transactions in READ ONLY mode are marked
as committed when the transaction starts. This provides a benefit in that record versions in such
transactions are never “interesting”, thus not inhibiting the regular garbage collection and not
delaying the advance of the OST marker.

Chapter 3. Changes in the Firebird Engine

45

READ CONSISTENCY READ ONLY transactions are still started as pre-committed, but in order to
avoid the regular garbage collection breaking future statement-level snapshots, it delays the
advance of the OST marker in the same way as it happens for SNAPSHOT transactions.

This delays only the regular (traditional) garbage collection, the intermediate
garbage collection (see below) is not affected.

Syntax and Configuration

Support for the new READ COMMITTED READ CONSISTENCY isolation level is found in SQL syntax,
in the API and in configuration settings.

Where SET TRANSACTION is available in SQL, the new isolation sub-level is set as follows:

SET TRANSACTION READ COMMITTED READ CONSISTENCY

To start a READ COMMITTED READ CONSISTENCY transaction via the ISC API, use the new constant
isc_tpb_read_consistency in the Transaction Parameter Buffer.

Starting with Firebird 4, usage of the legacy READ COMMITTED modes (RECORD VERSION and NO
RECORD VERSION) is discouraged and READ CONSISTENCY mode is recommended to be used
instead. For now, existing applications can be tested with the new READ COMMITTED READ
CONSISTENCY isolation level by setting the new configuration parameter ReadConsistency
described in the Configuration Additions and Changes chapter.

Please pay attention that the ReadConsistency configuration setting is enabled by
default, thus forcing all READ COMMITTED transactions to be executed in the
READ CONSISTENCY mode. Consider disabling this setting if the legacy behaviour
of READ COMMITTED transactions must be preserved.

Garbage Collection

The record version visibility rule provides the following logic for identifying record versions as
garbage:

• If snapshot CN can see some record version (RV_X) then all snapshots with numbers greater
than CN can also see RV_X.

• If all existing snapshots can see RV_X then all its back-versions can be removed, OR

• If the oldest active snapshot can see RV_X then all its back-versions can be removed.

The last part of the rule reproduces the legacy rule, whereby all record versions at the tail of the
versions chain start from some “mature” record version. The rule allows that mature record
version to be identified so that the whole tail after it can be cut.

However, with snapshots based on commit-order, version chains can be further shortened because
it enables some record versions located in intermediate positions in the versions chain to be
identified as eligible for GC. Each record version in the chain is marked with the value of the oldest

Chapter 3. Changes in the Firebird Engine

46

active snapshot that can see it. If several consecutive versions in a chain are marked with the same
oldest active snapshot value, then all those following the first one can be removed.

The engine performs garbage collection of intermediate record versions during the following
processes:

• sweep

• table scan during index creation

• background garbage collection in SuperServer

• in every user attachment after an updated or delete record is committed

Regular (traditional) garbage collection mechanism is not changed and still works
the same way as in prior Firebird versions.

To make it work, the engine maintains in shared memory an array of all active database snapshots.
When it needs to find the oldest active snapshot that can see a given record version, it just searches
for the CN of the transaction that created that record version.

The default initial size of this shared memory block is 64KB but it will grow automatically when
required. The initial block can be set to a custom size in firebird.conf and/or databases.conf using
the new parameter SnapshotsMemSize.

Precision Improvement for Calculations Involving
NUMERIC and DECIMAL
Alex Peshkov

Tracker ticket CORE-4409

As a side-effect of implementing the internal 128-bit integer data type, some improvements were
made to the way Firebird handles the precision of intermediate results from calculations involving
long NUMERIC and DECIMAL data types. In prior Firebird versions, numerics backed internally by the
BIGINT data type (i.e. with precision between 10 and 18 decimal digits) were multiplied/divided
using the same BIGINT data type for the result, which could cause overflow errors due to limited
precision available. In Firebird 4, such calculations are performed using 128-bit integers, thus
reducing possibilities for unexpected overflows.

Increased Number of Formats for Views
Adriano dos Santos Fernandes

Tracker ticket CORE-5647

Views are no longer limited to 255 formats (versions) before the database requires a backup and
restore. The new limit is 32,000 versions.

 This change does not apply to tables.

Chapter 3. Changes in the Firebird Engine

47

http://tracker.firebirdsql.org/browse/CORE-4409
http://tracker.firebirdsql.org/browse/CORE-5647

Optimizer Improvement for GROUP BY
Dmitry Yemanov

Tracker ticket CORE-4529

The improvement allows the use of a DESCENDING index on a column that is specified for GROUP BY.

xinetd Support on Linux Replaced
Alex Peshkov

Tracker ticket CORE-5238

On Linux, Firebird 4 uses the same network listener process (Firebird) for all architectures. For
Classic, the main (listener) process now starts up via init/systemd, binds to the 3050 port and
spawns a worker firebird process for every connection — similarly to what happens on Windows.

Support for RISC v.64 Platform
Richard Jones

Tracker ticket CORE-5779

A patch was introduced to compile Firebird 4.0 on the RISC v.64 platform.

Virtual table RDB$CONFIG
Vlad Khorsun

Tracker ticket CORE-3708

A virtual table enumerating configuration settings actual for the current database. Columns:

RDB$CONFIG_ID type INTEGER Unique row identifier, no special meaning

RDB$CONFIG_NAME type VARCHAR(63) Setting name (e.g. "TempCacheLimit")

RDB$CONFIG_VALUE type VARCHAR(255) Actual value of setting

RDB$CONFIG_DEFAULT type VARCHAR(255) Default value of setting (defined in the Firebird code)

RDB$CONFIG_IS_SET type BOOLEAN TRUE if value was set by user, FALSE otherwise

Chapter 3. Changes in the Firebird Engine

48

http://tracker.firebirdsql.org/browse/CORE-4529
http://tracker.firebirdsql.org/browse/CORE-5238
http://tracker.firebirdsql.org/browse/CORE-5779
http://tracker.firebirdsql.org/browse/CORE-3708

RDB$CONFIG_SOURCE type VARCHAR(255) Name of configuration file (relative to the Firebird
root directory) where this setting was taken from, or
special value "DPB" if the setting was specified by the
client application via API

Table RDB$CONFIG is populated from in-memory structures upon request and its instance is
preserved for the SQL query lifetime. For security reasons, access to this table is allowed to
administrators only. Non-privileged users see no rows in this table (and no error is raised).

Chapter 3. Changes in the Firebird Engine

49

Chapter 4. Changes to the Firebird API and
ODS
since Firebird 3.0 release

ODS (On-Disk Structure) Changes

New ODS Number

Firebird 4.0 creates databases with an ODS (On-Disk Structure) version of 13.

New System Tables

System tables added in ODS13:

RDB$TIME_ZONES Virtual table that enumerates supported time zones

RDB$PUBLICATIONS Publications defined in the database

RDB$PUBLICATION_TABLES Tables enabled for publication

RDB$CONFIG Virtual table that enumerates actual contiguration settings

In Firebird 4.0, there’s a single (pre-defined) publication named RDB$DEFAULT. User-
defined publications will be available in future Firebird releases.

New Columns in System Tables

Column RDB$SQL_SECURITY was added to the following system tables in ODS13:

• RDB$DATABASE

• RDB$FUNCTIONS

• RDB$PACKAGES

• RDB$PROCEDURES

• RDB$RELATIONS

• RDB$TRIGGERS

For RDB$DATABASE, it defines the default SQL SECURITY mode (DEFINER or INVOKER) applied to the
newly created objects. For other system tables, it defines the SQL SECURITY mode active for the
appropriate objects.

Also, column RDB$SYSTEM_PRIVILEGES is added to the system table RDB$ROLES. It stores system
privileges granted to a role.

Chapter 4. Changes to the Firebird API and ODS

50

Application Programming Interfaces
The wire protocol version for the Firebird 4.0 API is 16. Additions and changes are described in the
sections below.

Services Cleanup

Alex Peshkov

Apart from the widely-known Services Manager (service_mgr), Firebird has a group of so-called
“version 1” service managers. Backup and gsec are examples, along with a number of other
services related to shared cache control and the unused journaling feature. Since at least Firebird 3
they seem to be in a semi-working state at best, so they have undergone a cleanup.

A visible effect is that the constant service_mgr is no longer required in the connection string for a
service request. The request call will ignore anything in that field, including an empty string. The
remote client will do the right thing just by processing the host name, such as localhost:,
inet://localhost/ or inet://localhost.

Services API Extensions

Support for nbackup -fixup

Alex Peshkov

Added support to fixup (i.e. change the physical backup mode to normal) databases after file-system
copy.

The following action was added: isc_action_svc_nfix:: fixup database

Samples of use of new parameter in fbsvcmgr utility (supposing login and password are set using
some other method):

fbsvcmgr -action_nfix dbname /tmp/ecopy.fdb

Timeouts for Sessions & Statements

Session Timeouts

See Support for Session Timeouts at API Level in the chapter Changes in the Firebird Engine.

Statement Timeouts

See Support for Statement Timeouts at API Level in the chapter Changes in the Firebird Engine.

New Isolation Sub-level for READ COMMITTED Transactions

Provides API support for the new READ COMMITTED READ CONSISTENCY isolation sub-level for
READ COMMITTED transactions. To start a READ COMMITTED READ CONSISTENCY transaction via
the ISC API, use the new constant isc_tpb_read_consistency in the Transaction Parameter Buffer.

Chapter 4. Changes to the Firebird API and ODS

51

Support for Batch Insert and Update Operations in the API

Alex Peshkov

The OO-API in Firebird 4 supports execution of statements with more than a single set of
parameters — batch execution. The primary purpose of the batch interface design is to satisfy JDBC
requirements for batch processing of prepared statements, but it has some fundamental
differences:

• As with all data operations in Firebird, it is oriented on messages, not on single fields

• An important extension of our batch interface is support for inline use of BLOBs, which is
especially efficient when working with small BLOBs

• The execute() method returns not a plain array of integers but the special BatchCompletionState
interface which, depending on the batch creation parameters, can contain both the information
about the updated records and the error flag augmented by detailed status vectors for the
messages that caused execution errors

The methods described below illustrate how to implement everything needed for JDBC-style
prepared statement batch operations. Almost all of the methods described are used in 11.batch.cpp.
Please refer to it to see a live example of batching in Firebird.

Creating a Batch

As with ResultSet a batch may be created in two ways — using either the Statement or the
Attachment interface. In both cases, the createBatch() method of appropriate interface is called.

For the Attachment case, the text of the SQL statement to be executed in a batch is passed directly to
createBatch().

Tuning of the batch operation is performed using the Batch Parameters Block (BPB) whose format
is similar to DPB v.2: beginning with the tag (IBatch::CURRENT_VERSION) and followed by the set of
wide clumplets: 1-byte tag, 4-byte length, length-byte value. Possible tags are described in batch
interface.

The recommended (and simplest) way to create a BPB for batch creation is to use the appropriate
XpbBuilder interface:

IXpbBuilder* pb = utl->getXpbBuilder(&status, IXpbBuilder::BATCH, NULL, 0);
pb->insertInt(&status, IBatch::RECORD_COUNTS, 1);

This usage of the BPB directs the batch to account for a number of updated records on per-message
basis.

Creating the Batch Interface

To create the batch interface with the desired parameters, pass the BPB to a createBatch() call:

Chapter 4. Changes to the Firebird API and ODS

52

IBatch* batch = att->createBatch(&status, tra, 0, sqlStmtText, SQL_DIALECT_V6, NULL,
pb->getBufferLength(&status), pb->getBuffer(&status));

In this sample, the batch interface is created with the default message format because NULL is
passed instead of the input metadata format.

Getting the Message Format

To proceed with the created batch interface, we need to get the format of the messages it contains,
using the getMetadata() method:

IMessageMetadata* meta = batch->getMetadata(&status);

If you have passed your own format for messages to the batch, of course you can simply use that.

We assume here that some function is present that can fill the buffer “data” according to the passed
format “metadata”. For example,

fillNextMessage(unsigned char* data, IMessageMetadata* metadata)

A Message Buffer

To work with the messages we need a buffer for our “data”:

unsigned char* data = new unsigned char[meta->getMessageLength(&status)];

Now we can add some messages full of data to the batch:

fillNextMessage(data, meta);
batch->add(&status, 1, data);
fillNextMessage(data, meta);
batch->add(&status, 1, data);

An alternative way to work with messages is to use the FB_MESSAGE macro. An
example of this method can be found in the batch interface example, 11.batch.cpp.

Executing the Batch

The batch is now ready to be executed:

IBatchCompletionState* cs = batch->execute(&status, tra);

We requested accounting of the number of modified records (inserted, updated or deleted) per

Chapter 4. Changes to the Firebird API and ODS

53

message. The interface BatchCompletionState is used to print it. The total number of messages
processed by the batch could be less than the number of messages passed to the batch if an error
happened and the option enabling multiple errors during batch processing was not turned on. To
determine the number of messages processed:

unsigned total = cs->getSize(&status);

Now to print the state of each message:

for (unsigned p = 0; p < total; ++p)
 printf("Msg %u state %d\n", p, cs->getState(&status, p));

A complete example of printing the contents of BatchCompletionState is in the function print_cs() in
sample 11.batch.cpp.

Cleaning Up

Once analysis of the completion state is finished, remember to dispose of it:

cs->dispose();

If you want to empty the batch’s buffers without executing it for some reason, such as preparing for
a new portion of messages to process, use the cancel() method:

batch->cancel(&status);

Being reference-counted, the batch does not have special method to close it — just a standard
release() call:

batch->release();

Multiple Messages per Call

More than a single message can be added in one call to the batch. It is important to remember that
messages should be appropriately aligned for this feature to work correctly. The required
alignment and aligned size of the message should be obtained from the interface MessageMetadata.
For example:

unsigned aligned = meta->getAlignedLength(&status);

Later that size will be useful when allocating an array of messages and working with it:

Chapter 4. Changes to the Firebird API and ODS

54

unsigned char* data = new unsigned char[aligned * N];
 // N is the desired number of messages
for (int n = 0; n < N; ++n) fillNextMessage(&data[aligned * n], meta);
batch->add(&status, N, data);

After that, the the batch can be executed or the next portion of messages can be added to it.

Passing In-line BLOBs in Batch Operations

As a general rule, BLOBs are not compatible with batches. Batching is efficient when a lot of small
data are to be passed to the server in single step. BLOBs are treated as large objects so, as a rule, it
makes no sense to use them in batches.

Nevertheless, in practice it often happens that BLOBs are not too big. When that is the case, use of
the traditional BLOB API (create BLOB, pass segments to the server, close BLOB, pass BLOB’s ID in
the message) kills performance, especially over a WAN. Firebird’s batching therefore supports
passing BLOBs to the server in-line, along with other messages.

BLOB usage policy

To use the in-line BLOB feature, first a BLOB usage policy has to be set up as an option in the BPB
for the batch being created:

pb->insertInt(&status, IBatch::BLOB_IDS, IBatch::BLOB_IDS_ENGINE);

In this example, for the simplest and fairly common usage scenarios, the Firebird engine generates
the temporary BLOB IDs needed to keep a link between a BLOB and the message where it is used.
Imagine that the message is described as follows:

FB_MESSAGE(Msg, ThrowStatusWrapper,
(FB_VARCHAR(5), id)
(FB_VARCHAR(10), name)
(FB_BLOB, desc)
) project(&status, master);

Something like the following will send a message to the server containing the BLOB:

project->id = ++idCounter;
project->name.set(currentName);
batch->addBlob(&status, descriptionSize, descriptionText, &project->desc);
batch->add(&status, 1, project.getData());

Over-sized BLOBs

If some BLOB happens to be too big to fit into your existing buffer, then, instead of reallocating the
buffer, you can use the appendBlobData() method to append more data to the last added BLOB:

Chapter 4. Changes to the Firebird API and ODS

55

batch->addBlob(&status, descriptionSize, descriptionText, &project->desc, bpbLength,
bpb);

After adding the first part of the BLOB, get the next portion of data into descriptionText, update
descriptionSize and then do:

batch->appendBlobData(&status, descriptionSize, descriptionText);

You can do this work in a loop but take care not to overflow the internal batch buffers. Its size is
controlled by the BUFFER_BYTES_SIZE option when creating the batch interface. The default size is
10MB, but it cannot exceed 40MB. If you need to process a BLOB that is too big, having chosen to
use batching on the basis of data involving a lot of small BLOBs, just use the standard BLOB API and
the registerBlob method of the Batch interface.

User-Supplied BLOB IDs

Another possible choice in the BLOB policy is BLOB_IDS_USER, to supply a temporary BLOB_ID instead
of having one generated by Firebird.

Usage is not substantially different. Before calling addBlob(), place the correct execution ID, which
is unique per batch, into the memory referenced by the last parameter. Exactly the same ID should
be passed in the data message for the BLOB.

Considering that generation of BLOB IDs by the engine is very fast, such a policy may seem useless.
However, imagine a case where you get BLOBs and other data in relatively independent streams
(blocks in a file, for example) and some good IDs are already present in them. Supplying the BLOB
IDs can greatly simplify your code for such cases.

Streams vs Segments

Be aware that BLOBs created by the Batch interface are by default streamed, not segmented like
BLOBs created by means of createBlob(). Segmented BLOBs provide nothing interesting compared
with streamed ones — we support that format only for backward compatibility and recommend
avoiding them in new development.

Overriding to Use Segmented BLOBs

If you really must have segmented BLOBs, you can override the default by calling:

batch->setDefaultBpb(&status, bpbLength, bpb);

Of course, the passed BPB could contain other BLOB creation parameters, too. You
could also pass the BPB directly to addBlob() but, if most of the BLOBs you are
going to add have the same non-default format, it is slightly more efficient to use
setDefaultBpb().

Chapter 4. Changes to the Firebird API and ODS

56

A call to addBlob() will add the first segment to the BLOB; successive calls to appendBlobData() will
add more segments.

Segment size limit!

Keep in mind that segment size is limited to 64KB -1. Attempting to pass more data
in a single call will cause an error.

Multiple BLOBs Using Streams

Using the method addBlobStream(), it is possible to add more than one BLOB to the batch in a single
call.

A blob stream is a sequence of BLOBs, each starting with a BLOB header which needs to be
appropriately aligned. The Batch interface provides a special call for this purpose:

unsigned alignment = batch->getBlobAlignment(&status);

It is assumed that all components of a BLOB stream in a batch will be aligned, at least at the
alignment boundary. This includes the size of stream potions passed to addBlobStream(), which
should be a multiple of this alignment.

The header contains three fields: an 8-byte BLOB ID (must be non-zero), a 4-byte total BLOB size
and a 4 byte BPB size. The total BLOB size includes the enclosed BPB, i.e. the next BLOB in the
stream will always be found in the BLOB-size bytes after the header, taking the alignment into
account.

The BPB is present if the BPB size is not zero and is placed immediately after the header. The BLOB
data goes next, its format depending upon whether the BLOB is streamed or segmented:

• For a stream BLOB it is a plain sequence of bytes whose size is (BLOB-size - BPB-size)

• For a segmented BLOB, things are a bit more complicated: the BLOB data is a set of segments
where each segment has the format: 2-bytes for the size of the segment, aligned at
IBatch::BLOB_SEGHDR_ALIGN boundary, followed by as many bytes as are accounted for by this 2-
byte segment size

Bigger BLOBS in the Stream

When a big BLOB is added to the stream, its size is not always known in advance. To avoid having
too large a buffer for that BLOB (recalling that the size has to be provided in the BLOB header,
before the BLOB data) a BLOB continuation record may be used. In the BLOB header, you leave
BLOB size at a value known when creating that header and add a continuation record. The format
of the continuation record is identical to the BLOB header, except that both the BLOB ID and the
BPB size must always be zero.

Typically, you will want to have one continuation record per addBlobStream() call.

An example of this usage can be found in sample 11.batch.cpp.

Chapter 4. Changes to the Firebird API and ODS

57

Registering a Standard BLOB

The last method used to work with BLOBs stands apart from the first three that pass BLOB data
inline with the rest of the batch data. It is required for registering in a batch the ID of a BLOB
created using the standard BLOB API. This may be unavoidable if a really big BLOB has to be passed
to the batch.

The ID of such BLOB cannot be used in the batch directly without causing an invalid BLOB ID error
during batch execution. Instead do:

batch->registerBlob(&status, &realId, &msg->desc);

If the BLOB policy is making the Firebird engine generate BLOB IDs then this code is enough to
correctly register an existing BLOB in a batch. In other cases you will have to assign to msg->desc the
ID that is correct from the point of view of the batch.

Batch Ops in the Legacy (ISC) API

A few words about access to batches from the ISC API: a prepared ISC statement can be executed in
batch mode. The main support for it is present in ISC API functions: fb_get_transaction_interface
and fb_get_statement_interface. These methods enable access to the appropriate interfaces in the
same way as to existing ISC handles.

An example of this usage can be found in 12.batch_isc.cpp.

API Support for Time Zones

Structures (structs)

struct ISC_TIME_TZ
{
 ISC_TIME utc_time;
 ISC_USHORT time_zone;
};

struct ISC_TIMESTAMP_TZ
{
 ISC_TIMESTAMP utc_timestamp;
 ISC_USHORT time_zone;
};

Chapter 4. Changes to the Firebird API and ODS

58

struct ISC_TIME_TZ_EX
{
 ISC_TIME utc_time;
 ISC_USHORT time_zone;
 ISC_SHORT ext_offset;
};

struct ISC_TIMESTAMP_TZ_EX
{
 ISC_TIMESTAMP utc_timestamp;
 ISC_USHORT time_zone;
 ISC_SHORT ext_offset;
};

API Functions: (FirebirdInterface.idl — IUtil interface)

void decodeTimeTz(
 Status status,
 const ISC_TIME_TZ* timeTz,
 uint* hours,
 uint* minutes,
 uint* seconds,
 uint* fractions,
 uint timeZoneBufferLength,
 string timeZoneBuffer
);

void decodeTimeStampTz(
 Status status,
 const ISC_TIMESTAMP_TZ* timeStampTz,
 uint* year,
 uint* month,
 uint* day,
 uint* hours,
 uint* minutes,
 uint* seconds,
 uint* fractions,
 uint timeZoneBufferLength,
 string timeZoneBuffer
);

Chapter 4. Changes to the Firebird API and ODS

59

void encodeTimeTz(
 Status status,
 ISC_TIME_TZ* timeTz,
 uint hours,
 uint minutes,
 uint seconds,
 uint fractions,
 const string timeZone
);

void encodeTimeStampTz(
 Status status,
 ISC_TIMESTAMP_TZ* timeStampTz,
 uint year,
 uint month,
 uint day,
 uint hours,
 uint minutes,
 uint seconds,
 uint fractions,
 const string timeZone
);

void decodeTimeTzEx(
 Status status,
 const ISC_TIME_TZ_EX* timeTzEx,
 uint* hours,
 uint* minutes,
 uint* seconds,
 uint* fractions,
 uint timeZoneBufferLength,
 string timeZoneBuffer
);

Chapter 4. Changes to the Firebird API and ODS

60

void decodeTimeStampTzEx(
 Status status,
 const ISC_TIMESTAMP_TZ_EX* timeStampTzEx,
 uint* year,
 uint* month,
 uint* day,
 uint* hours,
 uint* minutes,
 uint* seconds,
 uint* fractions,
 uint timeZoneBufferLength,
 string timeZoneBuffer
);

API Support for DECFLOAT and Long Numerics

Alex Peshkov

DecFloat16 and DecFloat34 are helper interfaces that simplify working with the DECFLOAT (16-digit
and 34-digit respectively) data types. Available methods in the DecFloat16 interface are the
following:

void toBcd(
 const FB_DEC16* from,
 int* sign,
 uchar* bcd,
 int* exp
);

void toString(
 Status status,
 const FB_DEC16* from,
 uint bufferLength,
 string buffer
);

void fromBcd(
 int sign,
 const uchar* bcd,
 int exp,
 FB_DEC16* to
);

Chapter 4. Changes to the Firebird API and ODS

61

void fromString(
 Status status,
 const string from,
 FB_DEC16* to
);

The DecFloat34 interface shares the same methods, just using the FB_DEC34 structure.

Int128 is a helper interface for 128-bit integers (used internally as a base type for INT128, and also
for NUMERIC and DECIMAL data types with precision > 18), it contains the following methods:

void toString(
 Status status,
 const FB_I128* from,
 int scale,
 uint bufferLength,
 string buffer
);

void fromString(
 Status status,
 int scale,
 const string from,
 FB_I128* to
);

Structures used by the aforementioned interfaces are defined below:

struct FB_DEC16
{
 ISC_UINT64 fb_data[1];
};

struct FB_DEC34
{
 ISC_UINT64 fb_data[2];
};

struct FB_I128
{
 ISC_UINT64 fb_data[2];
};

Chapter 4. Changes to the Firebird API and ODS

62

In order to work with these new interfaces, the Util interface has been extended with the following
methods:

DecFloat16 getDecFloat16(Status status);
DecFloat34 getDecFloat34(Status status);
Int128 getInt128(Status status);

Additions to Other Interfaces

Alex Peshkov

A number of new methods have been added to the following interfaces.

Attachment

uint getIdleTimeout(Status status);
void setIdleTimeout(Status status, uint timeOut);

uint getStatementTimeout(Status status);
void setStatementTimeout(Status status, uint timeOut);

Batch createBatch(
 Status status,
 Transaction transaction,
 uint stmtLength,
 const string sqlStmt,
 uint dialect,
 MessageMetadata inMetadata,
 uint parLength,
 const uchar* par
);

Statement

uint getTimeout(Status status);
void setTimeout(Status status, uint timeout);

Batch createBatch(
 Status status,
 MessageMetadata inMetadata,
 uint parLength,
 const uchar* par
);

Chapter 4. Changes to the Firebird API and ODS

63

ClientBlock

AuthBlock getAuthBlock(Status status);

Server

void setDbCryptCallback(Status status, CryptKeyCallback cryptCallback);

MessageMetadata

uint getAlignment(Status status);
uint getAlignedLength(Status status);

MetadataBuilder

void setField(Status status, uint index, const string field);
void setRelation(Status status, uint index, const string relation);
void setOwner(Status status, uint index, const string owner);
void setAlias(Status status, uint index, const string alias);

FirebirdConf

uint getVersion(Status status);

ConfigManager

const string getDefaultSecurityDb();

Extensions to various getInfo() Methods

Attachment::getInfo()

The following actions were added:

fb_info_protocol_version Version of the remote protocol used by the current
connection

fb_info_crypt_plugin Name of the used database encryption plugin

fb_info_wire_crypt Name of the connection encryption plugin

fb_info_statement_timeout_db Statement execution timeout set in the configuration file

fb_info_statement_timeout_att Statement execution timeout set at the connection level

Chapter 4. Changes to the Firebird API and ODS

64

fb_info_ses_idle_timeout_db Idle connection timeout set in the configuration file

fb_info_ses_idle_timeout_att Idle connection timeout set at the connection level

fb_info_ses_idle_timeout_run Actual timeout value for the current connection

fb_info_creation_timestamp_tz Database creation timestamp (with a time zone)

fb_info_features List of features supported by provider of the current
connection

fb_info_next_attachment Current value of the next attachment ID counter

fb_info_next_statement Current value of the next statement ID counter

fb_info_db_guid Database GUID (persistent until restore / fixup)

fb_info_db_file_id Unique ID of the database file at the filesystem level

fb_info_replica_mode Database replica mode

Possible provider features (returned for fb_info_features) are:

fb_feature_multi_statements Multiple prepared statements in single attachment

fb_feature_multi_transactions Multiple concurrent transaction in single attachment

fb_feature_named_parameters Query parameters can be named

fb_feature_session_reset ALTER SESSION RESET is supported

fb_feature_read_consistency Read Consistency transaction isolation mode is supported

fb_feature_statement_timeout Statement timeout is supported

fb_feature_statement_long_life Prepared statements are not dropped on transaction end

Possible replica modes (returned for fb_info_replica_mode) are:

fb_info_replica_none Database is not in the replica state

fb_info_replica_read_only Database is a read-only replica

Chapter 4. Changes to the Firebird API and ODS

65

fb_info_replica_read_write Database is a read-write replica

Statement::getInfo()

The following actions were added:

isc_info_sql_stmt_timeout_user Timeout value of the current statement

isc_info_sql_stmt_timeout_run Actual timeout value of the current statement

isc_info_sql_stmt_blob_align Blob stream alignment in the Batch API

Transaction::getInfo()

The following action was added:

fb_info_tra_snapshot_number Snapshot number of the current transaction

Additions to the Legacy (ISC) API

Alex Peshkov

A few functions have been added to the ISC API.

ISC_STATUS fb_get_transaction_interface(ISC_STATUS*, void*, isc_tr_handle*);
ISC_STATUS fb_get_statement_interface(ISC_STATUS*, void*, isc_stmt_handle*);

They can be used to get an OO API object from the corresponding ISC API handle.

Chapter 4. Changes to the Firebird API and ODS

66

Chapter 5. Reserved Words and Changes

New Keywords in Firebird 4.0

Reserved

BINARY DECFLOAT INT128

LATERAL LOCAL LOCALTIME

LOCALTIMESTAMP PUBLICATION RDB$GET_TRANSACTION_CN

RDB$ERROR RDB$ROLE_IN_USE RDB$SYSTEM_PRIVILEGE

RESETTING TIMEZONE_HOUR TIMEZONE_MINUTE

UNBOUNDED VARBINARY WINDOW

WITHOUT

Non-reserved

BASE64_DECODE BASE64_ENCODE BIND

CLEAR COMPARE_DECFLOAT CONNECTIONS

CONSISTENCY COUNTER CRYPT_HASH

CTR_BIG_ENDIAN CTR_LENGTH CTR_LITTLE_ENDIAN

CUME_DIST DEFINER DISABLE

ENABLE EXCESS EXCLUDE

EXTENDED FIRST_DAY FOLLOWING

HEX_DECODE HEX_ENCODE IDLE

INCLUDE INVOKER IV

LAST_DAY LEGACY LIFETIME

LPARAM MAKE_DBKEY MESSAGE

MODE NATIVE NORMALIZE_DECFLOAT

NTILE NUMBER OLDEST

OTHERS OVERRIDING PERCENT_RANK

POOL PRECEDING PRIVILEGE

QUANTIZE RANGE RESET

RSA_DECRYPT RSA_ENCRYPT RSA_PRIVATE

RSA_PUBLIC RSA_SIGN_HASH RSA_VERIFY_HASH

SALT_LENGTH SECURITY SESSION

SIGNATURE SQL SYSTEM

TIES TOTALORDER TRAPS

Chapter 5. Reserved Words and Changes

67

Chapter 6. Configuration Additions and
Changes

Parameters for Timeouts
Two new parameters are available for global and per-database configuration, respectively, of
server-wide and database-wide idle session and statement timeouts. They are discussed in detail
elsewhere (see links).

ConnectionIdleTimeout

The value is integer, expressing minutes. Study the notes on idle session timeouts carefully to
understand how this configuration fits in with related settings via SQL and the API.

See Setting the Session Timeout in the chapter Changes in the Firebird Engine.

StatementTimeout

The value is integer, expressing seconds. Study the notes on statement timeouts carefully to
understand how this configuration fits in with related settings via SQL and the API.

See Setting a Statement Timeout in the chapter Changes in the Firebird Engine.

Parameters for External Connection Pooling
These parameters enable customization of aspects of pooling external connections.

ExtConnPoolSize

Configures the maximum number of idle connections allowed in the pool. It is an integer, from 0 to
1000. The installation default is 0, which disables the connection pool.

ExtConnPoolLifetime

Configures the number of seconds a connection should stay available after it has gone idle. The
installation default is 7200 seconds.

Parameters to Restrict Length of Object Identifiers
Object identifiers in an ODS 13 database can be up to 63 characters in length, and the engine stores
them in UTF-8, not UNICODE_FSS as previously. Two new global or per-database parameters are
available if you need to restrict either the byte-length or the character-length of object names in
ODS 13 databases for some reason.

Longer object names are optional, of course. Reasons you might need to restrict their length could
include:

Chapter 6. Configuration Additions and Changes

68

• Constraints imposed by the client language interface of existing applications, such as gpre or
Delphi

• In-house coding standards

• Interoperability for cross-database applications such as a third-party replication system or an
in-house system that uses multiple versions of Firebird

This is not an exhaustive list. It is the responsibility of the developer to test usage of longer object
names and establish whether length restriction is necessary.

Whether setting one or both parameters has exactly the same effect will depend on the characters
you use. Any non-ASCII character requires 2 bytes or more in UTF-8, so one cannot assume that
byte-length and character-length have a direct relationship in all situations.

The two settings are verified independently and if either constrains the length limit imposed by the
other, use of the longer identifier will be disallowed.

If you set either parameter globally, i.e. in firebird.conf, it will affect all databases,
including the security database. That has the potential to cause problems!

MaxIdentifierByteLength

Sets a limit for the number of bytes allowed in an object identifier. It is an integer, defaulting to 252
bytes, i.e., 63 characters * 4, 4 being the maximum number of bytes for each character.

To set it to the limit in previous Firebird versions, use 31.

MaxIdentifierCharLength

Sets a limit for the number of characters allowed in an object identifier. It is an integer, defaulting
to 63, the new limit implemented in Firebird 4.

Parameters Supporting Read Consistency in
Transactions
Firebird 4 takes a new approach to read consistency within transaction snapshots, enabling,
amongst other benefits, a sustained consistent read for statements within READ COMMITTED
transactions. This group of parameters allows for some customisation of the elements involved.

ReadConsistency

For now, existing applications can be tested with and without the new READ COMMITTED READ
CONSISTENCY isolation level by setting this parameter. Possible values are 1 and 0.

ReadConsistency = 1

(Default) The engine ignores the specified [NO] RECORD VERSION sub-level and forces all read-
committed transactions to be READ COMMITTED READ CONSISTENCY.

Chapter 6. Configuration Additions and Changes

69

ReadConsistency = 0

Allows the legacy engine behaviour, with the RECORD VERSION and NO RECORD VERSION sub-
levels working as before. READ COMMITTED READ CONSISTENCY is available but needs to be
specified explicitly.

This behaviour can be defined in firebird.conf and/or databases.conf.

TipCacheBlockSize

The list of all known transactions with associated Commit Numbers is maintained in shared
memory. It is implemented as an array whose index is a transaction ID and its item value is the
corresponding Commit Number.

The whole array is split into fixed-size blocks containing the CN’s for all transactions between the
OIT and Next Transaction markers. When the “Next Transaction” marker moves out of the scope of
the highest block, a new block is allocated. An old block is released when the “Oldest [Interesting]
Transaction” (OIT) marker moves out of the scope of the lowest block.

The default size for a TIP cache block is 4MB, providing capacity for 512 * 1024 transactions. Use
this parameter to configure a custom TIP cache block size in firebird.conf and/or databases.conf.

SnapshotsMemSize

To handle garbage collection of record versions younger than the Oldest Snapshot, (“intermediate
record versions”) the engine maintains in shared memory an array that it can search for the
Commit Number (CN) of a particular record version. See the Garbage Collection topic the chapter
Changes in the Firebird Engine.

The default initial size of this shared memory block is 64KB but it will grow automatically when
required. The initial block can be set to a custom size in firebird.conf and/or databases.conf.

Other Parameters

ClientBatchBuffer

Defines the buffer size used by the client connection for batch-mode transmission to the server
(when Batch API is used). See the Support for Batch Insert and Update Operations in the API topic
for more details.

DataTypeCompatibility

Specifies the compatibility level that defines what SQL data types can be exposed to the client API.
Currently two options are available: "3.0" and "2.5". The "3.0" emulation mode hides data types
introduced after Firebird 3.0 release, in particular DECIMAL/NUMERIC with precision 19 or higher,
DECFLOAT, TIME/TIMESTAMP WITH TIME ZONE. The corresponding values are returned via data types
already supported by Firebird 3.0. The "2.5" emulation mode also converts the BOOLEAN data type.
See the Native to Legacy Coercion Rules table for details. This setting allows legacy client
applications to work with Firebird 4.0 without recompiling and adjusting them to understand the

Chapter 6. Configuration Additions and Changes

70

new data types.

DefaultTimeZone

Defines the time zone used when the client session does not specify it explicitly. If left empty, the
default is the operating system time zone. When set at the server side, it’s the default session time
zone for attachments. When set at the client side, it’s the default time zone used with client-side API
functions.

OutputRedirectionFile

Allows to (optionally) redirect server’s stdout/stderr streams to some user-defined file. By default,
these streams are opened by the server but the output is discarded. Available as a global setting
inside firebird.conf.

Srp256 becomes the default authentication method

See Tracker ticket CORE-5788

The Secure Remote Password authentication plugin now uses the SHA-256 algorithm to calculate
the client’s proof for both server and client sides (see AuthServer and AuthClient settings in
firebird.conf). For backward compatbility, the client is configured to use the old Srp plugin (which
implements the SHA-1 algorithm) as a fallback. This setup allows to communicate with Firebird 3
servers that are not configured to use Srp256 (available since v3.0.4).

ChaCha is added as a default wire encryption method

WireCryptPlugin setting now defaults to ChaCha#20 as a wire encryption algorithm. If the
appropriate plugin is missing, then Alleged RC4 (aka ARC4) algorithm is used.

TempCacheLimit at database level

See Tracker ticket CORE-5718

TempCacheLimit, for setting the maximum amount of temporary space that can be cached in
memory, can now be configured at database level, i.e., in databases.conf. Previously, it was
available only as a global setting for all databases.

UseFileSystemCache is added as a replacement for
FileSystemCacheThreshold

See Tracker ticket CORE-6332

New boolean setting UseFileSystemCache provides an explicit control whether the OS filesystem
cache is used for the database. The value is customizable at the database level. The old setting
FileSystemCacheThreshold is preserved, but it is taken into account only if value for
UseFileSystemCache is not specified explicitly. Setting FileSystemCacheThreshold becomes deprecated
and will be removed in future Firebird versions.

Chapter 6. Configuration Additions and Changes

71

http://tracker.firebirdsql.org/browse/CORE-5788
http://tracker.firebirdsql.org/browse/CORE-5718
http://tracker.firebirdsql.org/browse/CORE-6332

InlineSortThreshold

See Tracker ticket CORE-2650

Controls how non-key fields are processed during sorting: stored inside the sort block or refetched
from data pages after the sorting.

Historically, when the external sorting is performed, Firebird writes both key fields (those specified
in the ORDER BY or GROUP BY clause) and non-key fields (all others referenced inside the query) to the
sort blocks, either stored in memory or swapped to temporary files. Once the sorting is completed,
these fields are read back from the sort blocks. This approach is generally considered being faster,
because records are read in storage order instead of randomly fetching data pages corresponding
to the sorted records. However, if non-key fields are large (e.g. long VARCHARs are involved), this
increases the size of the sort blocks and thus causes earlier swapping and more I/O for temporary
files. Firebird 4 provides an alternative approach, when only key fields and record DBKEY's are
stored inside the sort blocks and non-key fields are refetched from data pages after the sorting. This
improves sorting performance in the case of longish non-key fields.

The value specified for InlineSortThreshold defines the maximum sort record size (in bytes) that
can be stored inline, i.e. inside the sort block. Zero means that records are always refetched.

Chapter 6. Configuration Additions and Changes

72

http://tracker.firebirdsql.org/browse/CORE-2650

Chapter 7. Security
Security enhancements in Firebird 4 include:

Enhanced System Privileges
Alex Peshkov

Tracker ticket CORE-5343

This feature enables granting and revoking some special privileges for regular users to perform
tasks that have been historically limited to SYSDBA only, for example:

• Run utilities such as gbak, gfix, nbackup and so on

• Shut down a database and bring it online

• Trace other users' attachments

• Access the monitoring tables

• Run management statements

The implementation defines a set of system privileges, analogous to object privileges, from which
lists of privileged tasks can be assigned to roles.

List of Valid System Privileges

The following table lists the names of the valid system privileges that can be granted to and revoked
from roles.

USER_MANAGEMENT Manage users

READ_RAW_PAGES Read pages in raw format using
Attachment::getInfo()

CREATE_USER_TYPES Add/change/delete non-system records in RDB$TYPES

USE_NBACKUP_UTILITY Use nbackup to create database copies

CHANGE_SHUTDOWN_MODE Shut down database and bring online

TRACE_ANY_ATTACHMENT Trace other users' attachments

MONITOR_ANY_ATTACHMENT Monitor (tables MON$) other users' attachments

ACCESS_SHUTDOWN_DATABASE Access database when it is shut down

CREATE_DATABASE Create new databases (given in security.db)

DROP_DATABASE Drop this database

USE_GBAK_UTILITY Use appropriate utility

USE_GSTAT_UTILITY …

USE_GFIX_UTILITY …

Chapter 7. Security

73

http://tracker.firebirdsql.org/browse/CORE-5343

IGNORE_DB_TRIGGERS Instruct engine not to run DB-level triggers

CHANGE_HEADER_SETTINGS Modify parameters in DB header page

SELECT_ANY_OBJECT_IN_DATABASE Use SELECT for any selectable object

ACCESS_ANY_OBJECT_IN_DATABASE Access (in any possible way) any object

MODIFY_ANY_OBJECT_IN_DATABASE Modify (up to drop) any object

CHANGE_MAPPING_RULES Change authentication mappings

USE_GRANTED_BY_CLAUSE Use GRANTED BY in GRANT and REVOKE statements

GRANT_REVOKE_ON_ANY_OBJECT GRANT and REVOKE rights on any object in database

GRANT_REVOKE_ANY_DDL_RIGHT GRANT and REVOKE any DDL rights

CREATE_PRIVILEGED_ROLES Use SET SYSTEM PRIVILEGES in roles

MODIFY_EXT_CONN_POOL Use command ALTER EXTERNAL CONNECTIONS POOL

REPLICATE_INTO_DATABASE Use replication API to load change sets into database

New Grantee Type SYSTEM PRIVILEGE

At a lower level, a new grantee type SYSTEM PRIVILEGE enables the SYSDBA to grant and revoke
specific access privileges on database objects to a named system privilege. For example,

GRANT ALL ON PLG$SRP_VIEW TO SYSTEM PRIVILEGE USER_MANAGEMENT

grants to users having USER_MANAGEMENT privilege all rights to the view that is used in the SRP user
management plug-in.

Assigning System Privileges to a Role

To put all this to use, we have some new clauses in the syntax of the CREATE ROLE and ALTER ROLE
statements for attaching a list of the desired system privileges to a new or existing role.

The SET SYSTEM PRIVILEGES Clause

Tracker ticket CORE-2557

The syntax pattern for setting up or changing these special roles is as follows:

CREATE ROLE name SET SYSTEM PRIVILEGES TO <privilege1> {, <privilege2> {, ...
<privilegeN> }}
ALTER ROLE name SET SYSTEM PRIVILEGES TO <privilege1> {, <privilege2> {, ...
<privilegeN> }}

Both statements assign a non-empty list of system privileges to role name. The ALTER ROLE statement
clears privileges previously assigned to the named role, before constructing the new list.

Chapter 7. Security

74

http://tracker.firebirdsql.org/browse/CORE-2557

Be aware that each system privilege provides a very thin level of control. For some
tasks it may be necessary to give the user more than one privilege to perform some
task. For example, add IGNORE_DB_TRIGGERS to USE_GSTAT_UTILITY because gstat
needs to ignore database triggers.

Note that this facility provides a solution to an old Tracker request (CORE-2557) to implement
permissions on the monitoring tables:

CREATE ROLE MONITOR SET SYSTEM PRIVILEGES TO MONITOR_ANY_ATTACHMENT;
GRANT MONITOR TO ROLE MYROLE;

Dropping System Privileges from a Role

This statement is used to clear the list of system privileges from the named role:

ALTER ROLE name DROP SYSTEM PRIVILEGES

The role name is not dropped, just the list of system privileges attached to it.

Function RDB$SYSTEM_PRIVILEGE

To accompany all this delegation of power is a new built-in function, RDB$SYSTEM_PRIVILEGE(). It
takes a valid system privilege as an argument and returns True if the current attachment has the
given system privilege.

Syntax

RDB$SYSTEM_PRIVILEGE(<privilege>)

Example

select rdb$system_privilege(user_management) from rdb$database;

Granting a Role to Another Role
Roman Simakov

Tracker ticket CORE-1815

Firebird 4 allows a role to be granted to another role — a phenomenon that has been nicknamed
“cumulative roles”. If you hear that term, it is referring to roles that are embedded within other
roles by way of GRANT ROLE a TO ROLE b, something Firebird would not allow before.

Take careful note that the GRANT ROLE syntax has been extended, along with its
effects.

Chapter 7. Security

75

http://tracker.firebirdsql.org/browse/CORE-2557
http://tracker.firebirdsql.org/browse/CORE-1815

Syntax Pattern

GRANT [DEFAULT] role_name TO [USER | ROLE] user/role_name [WITH ADMIN OPTION];
REVOKE [DEFAULT] role_name FROM [USER | ROLE] user/role_name [WITH ADMIN OPTION];

 Above syntax is a simplified version, the full GRANT and REVOKE has more options.

The DEFAULT Keyword

If the optional DEFAULT keyword is included, the role will be used every time the user logs in, even if
the role is not specified explicitly in the login credentials. During attachment, the user will get the
privileges of all roles that have been granted to him/her with the DEFAULT property. This set will
include all the privileges of all the embedded roles that have been granted to the role_name role
with the DEFAULT property.

Setting (or not setting) a role in the login does not affect the default role. The set of rights, given (by
roles) to the user after login is the union of the login role (when set), all default roles granted to the
user and all roles granted to this set of roles.

WITH ADMIN OPTION Clause

If a user is to be allowed to grant a role to another user or to another role, the WITH ADMIN OPTION
should be included. Subsequently, the user will be able to grant any role in the sequence of roles
granted to him, provided every role in the sequence has WITH ADMIN OPTION.

Example Using a Cumulative Role

CREATE DATABASE 'LOCALHOST:/TMP/CUMROLES.FDB';
CREATE TABLE T(I INTEGER);
CREATE ROLE TINS;
CREATE ROLE CUMR;
GRANT INSERT ON T TO TINS;
GRANT DEFAULT TINS TO CUMR WITH ADMIN OPTION;
GRANT CUMR TO USER US WITH ADMIN OPTION;
CONNECT 'LOCALHOST:/TMP/CUMROLES.FDB' USER 'US' PASSWORD 'PAS';
INSERT INTO T VALUES (1);
GRANT TINS TO US2;

Revoking the DEFAULT Property of a Role Assignment

To remove the DEFAULT property of a role assignment without revoking the role itself, include the
DEFAULT keyword in the REVOKE statement:

REVOKE DEFAULT ghost FROM USER henry
REVOKE DEFAULT ghost FROM ROLE poltergeist

Chapter 7. Security

76

Otherwise, revoking a role altogether from a user is unchanged. However, now a role can be
revoked from a role. For example,

REVOKE ghost FROM USER henry
REVOKE ghost FROM ROLE poltergeist

Function RDB$ROLE_IN_USE

Roman Simakov

Tracker ticket CORE-2762

A new built-in function lets the current user check whether a specific role is available under his/her
current credentials. It takes a single-quoted role name as a string argument of arbitrary length and
returns a Boolean result.

Syntax

RDB$ROLE_IN_USE(role_name)

List Currently Active Roles

Tracker ticket CORE-751

To get a list of currently active roles you can run:

SELECT * FROM RDB$ROLES WHERE RDB$ROLE_IN_USE(RDB$ROLE_NAME)

SQL SECURITY Feature
Roman Simakov

Tracker ticket CORE-5568

This new feature in Firebird 4 enables executable objects (triggers, stored procedures, stored
functions) to be defined to run in the context of an SQL SECURITY clause, as defined in the SQL
standards (2003, 2011).

The SQL SECURITY scenario has two contexts: INVOKER and DEFINER. The INVOKER context
corresponds to the privileges available to the CURRENT_USER or the calling object, while DEFINER
corresponds to those available to the owner of the object.

The SQL SECURITY property is an optional part of an object’s definition that can be applied to the
object with DDL statements. The property cannot be dropped from functions, procedures and
packages, but it can be changed from INVOKER to DEFINER and vice versa.

It is not the same thing as SQL privileges, which are applied to users and some database object

Chapter 7. Security

77

http://tracker.firebirdsql.org/browse/CORE-2762
http://tracker.firebirdsql.org/browse/CORE-751
http://tracker.firebirdsql.org/browse/CORE-5568

types to give them various types of access to database objects. When an executable object in
Firebird needs access to a table, a view or another executable object, the target object is not
accessible if the invoker does not have the necessary privileges on it. That has been the situation in
previous Firebird versions and remains so in Firebird 4. That is, by default, all executable objects
have the SQL SECURITY INVOKER property in Firebird 4. Any caller lacking the necessary privileges
will be rejected.

If a routine has the SQL SECURITY DEFINER property applied to it, the invoking user or routine will
be able to execute it if the required privileges have been granted to its owner, without the need for
the caller to be granted those privileges specifically.

In summary:

• If INVOKER is set, the access rights for executing the call to an executable object are determined
by checking the current user’s active set of privileges

• If DEFINER is set, the access rights of the object owner will be applied instead, regardless of the
current user’s active privilege set

Syntax Patterns

CREATE TABLE table_name (...) [SQL SECURITY {DEFINER | INVOKER}]
ALTER TABLE table_name ... [{ALTER SQL SECURITY {DEFINER | INVOKER} | DROP SQL
SECURITY}]
CREATE [OR ALTER] FUNCTION function_name ... [SQL SECURITY {DEFINER | INVOKER}] AS ...
CREATE [OR ALTER] PROCEDURE procedure_name ... [SQL SECURITY {DEFINER | INVOKER}] AS
...
CREATE [OR ALTER] TRIGGER trigger_name ... [SQL SECURITY {DEFINER | INVOKER} | DROP
SQL SECURITY] [AS ...]
CREATE [OR ALTER] PACKAGE package_name [SQL SECURITY {DEFINER | INVOKER}] AS ...

ALTER DATABASE SET DEFAULT SQL SECURITY {DEFINER | INVOKER}

Packaged Routines

An explicit SQL SECURITY clause is not valid for procedures and functions defined
in a package and will cause an error.

Triggers

Triggers inherit the setting of the SQL SECURITY property from the table, but it can be overridden
explicitly. If the property is changed for a table, triggers that do not carry the overridden property
will not see the effect of the change until next time the trigger is loaded into the metadata cache.

To remove an explicit SQL SECURITY option from a trigger, e.g. one named tr_ins, you can run

alter trigger tr_ins DROP SQL SECURITY;

To set it again to SQL SECURITY INVOKER, run

Chapter 7. Security

78

alter trigger tr_ins sql security invoker;

Examples Using the SQL SECURITY Property

1. With DEFINER set for table t, user US needs only the SELECT privilege on t. If it were set for
INVOKER, the user would also need the EXECUTE privilege on function f.

set term ^;
create function f() returns int
as
begin
 return 3;
end^
set term ;^
create table t (i integer, c computed by (i + f())) SQL SECURITY DEFINER;
insert into t values (2);
grant select on table t to user us;

commit;

connect 'localhost:/tmp/7.fdb' user us password 'pas';
select * from t;

2. With DEFINER set for function f, user US needs only the EXECUTE privilege on f. If it were set for
INVOKER, the user would also need the INSERT privilege on table t.

set term ^;
create function f (i integer) returns int SQL SECURITY DEFINER
as
begin
 insert into t values (:i);
 return i + 1;
end^
set term ;^
grant execute on function f to user us;

commit;

connect 'localhost:/tmp/59.fdb' user us password 'pas';
select f(3) from rdb$database;

3. With DEFINER set for procedure p, user US needs only the EXECUTE privilege on p. If it were set
for INVOKER, either the user or the procedure would also need the INSERT privilege on table t.

Chapter 7. Security

79

set term ^;
create procedure p (i integer) SQL SECURITY DEFINER
as
begin
 insert into t values (:i);
end^
set term ;^

grant execute on procedure p to user us;
commit;

connect 'localhost:/tmp/17.fdb' user us password 'pas';
execute procedure p(1);

4. With DEFINER set for trigger tr_ins, user US needs only the INSERT privilege on tr. If it were set
for INVOKER, either the user or the trigger would also need the INSERT privilege on table t.

create table tr (i integer);
create table t (i integer);
set term ^;
create trigger tr_ins for tr after insert SQL SECURITY DEFINER
as
begin
 insert into t values (NEW.i);
end^
set term ;^
grant insert on table tr to user us;

commit;

connect 'localhost:/tmp/29.fdb' user us password 'pas';
insert into tr values(2);

The result would be the same if SQL SECURITY DEFINER were specified for table TR:

Chapter 7. Security

80

create table tr (i integer) SQL SECURITY DEFINER;
create table t (i integer);
set term ^;
create trigger tr_ins for tr after insert
as
begin
 insert into t values (NEW.i);
end^
set term ;^
grant insert on table tr to user us;

commit;

connect 'localhost:/tmp/29.fdb' user us password 'pas';
insert into tr values(2);

5. With DEFINER set for package pk, user US needs only the EXECUTE privilege on pk. If it were set for
INVOKER, either the user or the package would also need the INSERT privilege on table t.

create table t (i integer);
set term ^;
create package pk SQL SECURITY DEFINER
as
begin
 function f(i integer) returns int;
end^

create package body pk
as
begin
 function f(i integer) returns int
 as
 begin
 insert into t values (:i);
 return i + 1;
 end
end^
set term ;^
grant execute on package pk to user us;

commit;

connect 'localhost:/tmp/69.fdb' user us password 'pas';
select pk.f(3) from rdb$database;

Chapter 7. Security

81

Built-in Cryptographic Functions
Alex Peshkov

Tracker ticket CORE-5970

Firebird 4 introduces eight new built-in functions supporting cryptographic tasks.

ENCRYPT() and DECRYPT()

For encrypting/decrypting data using a symmetric cipher.

Syntax

{ENCRYPT | DECRYPT} (<string | blob> USING <algorithm> [MODE <mode>] KEY <string>
 [IV <string>] [<endianness>] [CTR_LENGTH <smallint>] [COUNTER <bigint>])

<algorithm> ::= { <block_cipher> | <stream_cipher> }
<block_cipher> ::= { AES | ANUBIS | BLOWFISH | KHAZAD | RC5 | RC6 | SAFER+ | TWOFISH |
XTEA }
<stream_cipher> ::= { CHACHA20 | RC4 | SOBER128 }
<mode> ::= { CBC | CFB | CTR | ECB | OFB }
<endianness> ::= { CTR_BIG_ENDIAN | CTR_LITTLE_ENDIAN }

• Mode should be specified for block ciphers

• Initialization vector (IV) should be specified for block ciphers in all modes
except ECB and all stream ciphers except RC4

• Endianness may be specified only in CTR mode, default is little endian counter

• Counter length (CTR_LENGTH, bytes) may be specified only in CTR mode,
default is the size of IV

• Initial counter value (COUNTER) may be specified only for CHACHA20 cipher,
default is 0

• Sizes of data strings passed to these functions are in accordance with the
selected algorithm and mode requirements

• Functions return BLOB when the first argument is blob and varbinary for all
text types.

Examples

select encrypt('897897' using sober128 key 'AbcdAbcdAbcdAbcd' iv '01234567')
 from rdb$database;
select decrypt(x'0154090759DF' using sober128 key 'AbcdAbcdAbcdAbcd' iv '01234567')
 from rdb$database;
select decrypt(secret_field using aes mode ofb key '0123456701234567' iv init_vector)
 from secure_table;

Chapter 7. Security

82

http://tracker.firebirdsql.org/browse/CORE-5970

RSA_PRIVATE()

Returns an RSA private key of specified length (in bytes) in PKCS#1 format as a VARBINARY string.

Syntax

RSA_PRIVATE (<smallint>)

Example

select rdb$set_context('USER_SESSION', 'private_key', rsa_private(256))
 from rdb$database;

Putting private keys in the context variables is not secure. SYSDBA and users with
the role RDB$ADMIN or the system privilege MONITOR_ANY_ATTACHMENT can see all
context variables from all attachments.

RSA_PUBLIC()

Returns the RSA public key for a specified RSA private key. Both keys are in PKCS#1 format.

Syntax

RSA_PUBLIC (<private key>)

 Run your samples one by one from the RSA_PRIVATE function forward.

Example

select rdb$set_context('USER_SESSION', 'public_key',
 rsa_public(rdb$get_context('USER_SESSION', 'private_key'))) from rdb$database;

RSA_ENCRYPT()

Pads data using OAEP padding and encrypts it using an RSA public key. Normally used to encrypt
short symmetric keys which are then used in block ciphers to encrypt a message.

Syntax

RSA_ENCRYPT (<string> KEY <public key> [LPARAM <string>] [HASH <hash>])

KEY should be a value returned by the RSA_PUBLIC function. LPARAM is an additional system-specific
tag that can be applied to identify which system encrypted the message. Its default value is NULL.

<hash> ::= { MD5 | SHA1 | SHA256 | SHA512 }

Chapter 7. Security

83

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

Default is SHA256.

 Run your samples one by one from the RSA_PRIVATE function forward.

Example

select rdb$set_context('USER_SESSION', 'msg', rsa_encrypt('Some message'
 key rdb$get_context('USER_SESSION', 'public_key'))) from rdb$database;

RSA_DECRYPT()

Decrypts using the RSA private key and OAEP de-pads the resulting data.

Syntax

RSA_DECRYPT (<string> KEY <private key> [LPARAM <string>] [HASH <hash>])

KEY should be a value returned by the RSA_PRIVATE function. LPARAM is the same variable passed to
RSA_ENCRYPT. If it does not match what was used during encryption, RSA_DECRYPT will not decrypt the
packet.

<hash> ::= { MD5 | SHA1 | SHA256 | SHA512 }

Default is SHA256.

 Run your samples one by one from the RSA_PRIVATE function forward.

Example

select rsa_decrypt(rdb$get_context('USER_SESSION', 'msg')
 key rdb$get_context('USER_SESSION', 'private_key')) from rdb$database;

RSA_SIGN_HASH()

Performs PSS encoding of the message digest to be signed and signs using the RSA private key.

PSS encoding

Probabilistic Signature Scheme (PSS) is a cryptographic signature scheme specifically
developed to allow modern methods of security analysis to prove that its security directly
relates to that of the RSA problem. There is no such proof for the traditional PKCS#1 v1.5
scheme.

Chapter 7. Security

84

Syntax

RSA_SIGN_HASH (<message digest> KEY <private key>
 [HASH <hash>] [SALT_LENGTH <smallint>])

message digest is an already hashed message.

KEY should be a value returned by the RSA_PRIVATE function.

<hash> ::= { MD5 | SHA1 | SHA256 | SHA512 }

Default is SHA256. hash should match the hash algorithm used to generate the message hash value.

SALT_LENGTH indicates the length of the desired salt, and should typically be small. A good value is
between 8 and 16.

 Run your samples one by one from the RSA_PRIVATE function forward.

Example

select rdb$set_context('USER_SESSION', 'msg',
 rsa_sign_hash(crypt_hash('Test message' using sha256)
 key rdb$get_context('USER_SESSION', 'private_key'))) from rdb$database;

RSA_VERIFY_HASH()

Performs PSS encoding of message digest to be signed and verifies its digital signature using the
RSA public key.

Syntax

RSA_VERIFY_HASH (
 <message digest> SIGNATURE <string>
 KEY <public key> [HASH <hash>] [SALT_LENGTH <smallint>])

message digest is an already hashed message.

SIGNATURE should be a value returned by the RSA_SIGN_HASH function.

KEY should be a value returned by RSA_PUBLIC function.

<hash> ::= { MD5 | SHA1 | SHA256 | SHA512 }

Default is SHA256. The hash should match the hash algorithm used to generate the message digest
value and the original signature.

SALT_LENGTH indicates the length of the desired salt, and should typically be small. A good value is

Chapter 7. Security

85

between 8 and 16.

 Run your samples one by one from the RSA_PRIVATE function forward.

Example

select rsa_verify_hash(
 crypt_hash('Test message' using sha256)
 signature rdb$get_context('USER_SESSION', 'msg')
 key rdb$get_context('USER_SESSION', 'public_key'))
from rdb$database;

Improvements to Security Features
The following improvements were made to existing security features:

User Managing Other Users

Alex Peshkov

Tracker ticket CORE-5770

A user that was created with user account administration privileges in the security database (via
the … GRANT ADMIN ROLE clause) no longer has to hold the RDB$ADMIN role in the connected database
and pass it explicitly in order to create, alter or drop other users.

 This improvement is also backported to Firebird 3.0.5.

Chapter 7. Security

86

http://tracker.firebirdsql.org/browse/CORE-5770

Chapter 8. Management Statements
Over the more recent releases of Firebird a new class of DSQL statement has emerged in Firebird’s
SQL lexicon, usually for administering aspects of the client/server environment. Typically, such
statements commence with the verb SET, especially those introduced in Firebird 4.

Some statements of this class, introduced earlier, use the verb ALTER, although
management statements should not be confused with DDL ALTER statements that
modify database objects like tables, views, procedures, roles, et al.

Management statements can run anywhere DSQL can run but, typically, the developer will want to
run a management statement in a database trigger. In past releases, management statements were
treated in PSQL like DDL, precluding them from running directly inside a PSQL module. From
Firebird 4 forward, a pre-determined set of them can be used directly in PSQL modules without the
need to wrap them in an EXECUTE STATEMENT block. For more details of the current set, see Allow
Management Statements in PSQL Blocks in the PSQL chapter.

Most of the management statements introduced in Firebird 4 affect the current connection
(“session”) only, and do not require any authorization over and above the login privileges of a
current user without elevated privileges.

Some management statements operate beyond the scope of the current session. Examples are the
ALTER DATABASE … statements to control nBackup or the ALTER EXTERNAL CONNECTIONS POOL statements
introduced in Firebird 4 to manage connection pooling. A new set of system privileges, analogous
with SQL privileges granted for database objects, is provided for assignment to a role, to enable the
required authority to run a specific management statement in this category. For details, refer to
Enhanced System Privileges in the Security chapter.

Connections Pooling Management
A group of management statements for use with connections pooling.

Authorization

A role carrying the new system privilege MODIFY_EXT_CONN_POOL is required to run
the statements.

ALTER EXTERNAL CONNECTIONS POOL

The new statement ALTER EXTERNAL CONNECTIONS POOL has been added to the repertoire for managing
the external connections pool.

The syntax is:

ALTER EXTERNAL CONNECTIONS POOL { <parameter variants> }

When prepared it is described like a DDL statement but its effect is immediate — it is executed

Chapter 8. Management Statements

87

immediately and completely, without waiting for transaction commit.

The statements can be issued from any connection, and changes are applied to the in-memory
instance of the pool in the current Firebird process. If the process is a Classic one, a change
submitted there does not affect other Classic processes.

Changes made with ALTER EXTERNAL CONNECTIONS POOL are not persistent: after a restart, Firebird will
use the pool settings configured in firebird.conf by ExtConnPoolSize and ExtConnPoolLifeTime.

Full Syntax

Full syntax for the variants follows.

To set the maximum number of idle connections:

ALTER EXTERNAL CONNECTIONS POOL SET SIZE int_value

Valid values are from 0 to 1000. Setting it to zero disables the pool. The default value is set using the
parameter ExtConnPoolSize in firebird.conf.

To set the lifetime of an idle connection:

ALTER EXTERNAL CONNECTIONS POOL SET LIFETIME int_value <time_part>

<time_part> ::= { SECOND | MINUTE | HOUR }

Valid values are from 1 SECOND to 24 HOUR. The default value (in seconds) is set using the parameter
ExtConnPoolLifetime in firebird.conf.

To close all idle connections and instigate dissociation of all active connections so they are
immediately closed when they become unused:

ALTER EXTERNAL CONNECTIONS POOL CLEAR ALL

To close expired idle connections:

ALTER EXTERNAL CONNECTIONS POOL CLEAR OLDEST

ALTER SESSION RESET
Syntax

ALTER SESSION RESET

This statement is used to reset the current user session to its initial state. It could be useful for re-

Chapter 8. Management Statements

88

using the session by a client application (for example, by a client-side connection pool). In order to
reuse a session, all its user context variables and contents of temporary tables should be cleared
and all its session-level settings should be reset to their default values.

This statement is executed the following way:

• Error isc_ses_reset_err is raised if any transaction remains active in the current session, except
of current transaction and two-phase-commit transactions in the prepared state.

• System variable RESETTING is set to TRUE.

• ON DISCONNECT database triggers are fired, if present and allowed for current connection.

• The current transaction (the one executing ALTER SESSION RESET), if present, is rolled back. A
warning is reported if this transaction had modified some data in tables before resetting the
session.

• DECFLOAT parameters (TRAP and ROUND) are reset to the initial values defined using DPB at
connection time, or otherwise the system default

• Session and statement timeouts are reset to zero.

• Context variables defined for the 'USER_SESSION' namespace are removed.

• Global temporary tables defined as ON COMMIT PRESERVE ROWS are truncated (their contents is
cleared).

• Current role is restored to the initial value defined using DPB at connection time, the security
classes cache is cleared (if role was changed).

• The session time zone is reset to the initial value defined using DPB at connection time, or
otherwise the system default.

• The bind configuration is reset to the initial value defined using DPB at connection time, or
otherwise the database or system default.

• In general, configuration values should revert to values configured using DPB at connection
time, or otherwise the database or system default.

• ON CONNECT database triggers are fired, if present and allowed for current connection.

• A new transaction is implicitly started with the same parameters as the transaction that was
rolled back (if it was present).

• System variable RESETTING is set to FALSE.

Note, CURRENT_USER and CURRENT_CONNECTION will not be changed.

New system variable RESETTING is introduced to detect cases when a database trigger is fired due to
session reset. It is available in triggers only and can be used in any place when a boolean predicate
is allowed. Its value is TRUE if session reset is in progress and FALSE otherwise. RESETTING is a
reserved word now.

Errors handling

Any error raised by ON DISCONNECT triggers aborts session reset and leaves the session state
unchanged. Such errors are reported using primary error code isc_session_reset_err and error text

Chapter 8. Management Statements

89

"Cannot reset user session".

Any error raised after ON DISCONNECT triggers (including the ones raised by ON CONNECT triggers)
aborts both session reset statement execution and connection itself. Such errors are reported using
primary error code isc_session_reset_failed and error text "Reset of user session failed. Connection
is shut down.". Subsequent operations on connection (except detach) will fail with isc_att_shutdown
error.

Time Zone Management
Statement syntax has been added to support management of the time zone features for the current
connection.

SET TIME ZONE

Changes the session time zone.

Syntax

SET TIME ZONE { time_zone_string | LOCAL }

Examples

set time zone '-02:00';
set time zone 'America/Sao_Paulo';
set time zone local;

Timeout Management
The timeout periods for session and statement timeouts can be managed at session level using the
management statements SET SESSION IDLE TIMEOUT and SET STATEMENT TIMEOUT, respectively.

Setting DECFLOAT Properties
Syntax:

SET DECFLOAT <property-name> [TO] <value>

are available for controlling the properties of the DECFLOAT data type for the current session.

Possible properties and their values are the following:

• SET DECFLOAT ROUND <mode> controls the rounding mode used in operations with DECFLOAT values.
Valid modes are:

Chapter 8. Management Statements

90

CEILING towards +infinity

UP away from 0

HALF_UP to nearest, if equidistant, then up

HALF_EVEN to nearest, if equidistant, ensure last digit in the result will be even

HALF_DOWN to nearest, if equidistant, then down

DOWN towards 0

FLOOR towards -infinity

REROUND up if digit to be rounded is 0 or 5, down in other cases

The default rounding mode is HALF-UP. The initial configuration may be specified via API by
using DPB tag isc_dpb_decfloat_round followed by the string value.

• SET DECFLOAT TRAPS TO <comma-separated traps list which may be empty> controls which
exceptional conditions cause a trap. Valid traps are:

Division_by_zero (set by default)

Inexact  — 

Invalid_operation (set by default)

Overflow (set by default)

Underflow  — 

The initial configuration may be specified via API by using DPB tag isc_dpb_decfloat_traps
followed by the string value.

Setting Data Type Coercion Rules
Syntax:

SET BIND OF { <type-from> | TIME ZONE } TO { <type-to> | LEGACY | NATIVE | EXTENDED }

This management statement makes it possible to substitute one data type with another one when
performing the client-server interaction. In other words, type-from returned by the engine is
represented as type-to in the client API.

Chapter 8. Management Statements

91

Only fields returned by the database engine in regular messages are substituted
according to these rules. Variables returned as an array slice are not affected by
the SET BIND statement.

When an incomplete type definition is used (i.e. simply CHAR instead of CHAR(n)) in the FROM part,
the coercion is performed for all CHAR columns. The special incomplete type TIME ZONE stands for all
types WITH TIME ZONE (namely TIME and TIMESTAMP). When an incomplete type definition is used in
the TO part, the engine defines missing details about that type automatically based on source
column.

Changing the binding of any NUMERIC or DECIMAL data type does not affect the appropriate underlying
integer type. In contrast, changing the binding of an integer data type also affects appropriate
NUMERICs/DECIMALs.

The special format LEGACY is used when a data type, missing in previous Firebird version, should be
represented in a way, understandable by old client software (possibly with some data loss). The
coercion rules applied in this case are shown in the table below.

Table 1. Native to LEGACY coercion rules

Native data type Legacy data type

BOOLEAN CHAR(5)

DECFLOAT DOUBLE PRECISION

INT128 BIGINT

TIME WITH TIME ZONE TIME WITHOUT TIME ZONE

TIMESTAMP WITH TIME ZONE TIMESTAMP WITHOUT TIME ZONE

Using EXTENDED in the TO part causes the engine to coerce to an extended form of the FROM data
type. Currently, this works only for TIME/TIMESTAMP WITH TIME ZONE, they are coerced to EXTENDED
TIME/TIMESTAMP WITH TIME ZONE. The EXTENDED type contains both the time zone name, and the
corresponding GMT offset, so it remains usable if the client application cannot process named time
zones properly (e.g. due to the missing ICU library).

Setting a binding to NATIVE resets the existing coercion rule for this data type and returns it in the
native format.

Examples:

Chapter 8. Management Statements

92

SELECT CAST('123.45' AS DECFLOAT(16)) FROM RDB$DATABASE; --native

 CAST
=======================
 123.45

SET BIND OF DECFLOAT TO DOUBLE PRECISION;
SELECT CAST('123.45' AS DECFLOAT(16)) FROM RDB$DATABASE; --double

 CAST
=======================
 123.4500000000000

SET BIND OF DECFLOAT(34) TO CHAR;
SELECT CAST('123.45' AS DECFLOAT(16)) FROM RDB$DATABASE; --still double

 CAST
=======================
 123.4500000000000

SELECT CAST('123.45' AS DECFLOAT(34)) FROM RDB$DATABASE; --text

CAST
==
123.45

In the case of missing ICU on the client side:

SELECT CURRENT_TIMESTAMP FROM RDB$DATABASE;

 CURRENT_TIMESTAMP
===
2020-02-21 16:26:48.0230 GMT*

SET BIND OF TIME ZONE TO EXTENDED;
SELECT CURRENT_TIMESTAMP FROM RDB$DATABASE;

 CURRENT_TIMESTAMP
===
2020-02-21 19:26:55.6820 +03:00

Chapter 8. Management Statements

93

Chapter 9. Data Definition Language (DDL)

Quick Links
• Extended Length for Object Names

• Data Type DECFLOAT

• Increased Precision for Exact Numeric Types

• Standard Compliance for Data Type FLOAT

• Data Type Extensions for Time Zone Support

• Aliases for Binary String Types

• Extensions to the IDENTITY Type

• Excess parameters in EXECUTE STATEMENT

• Replication Management

Extended Length for Object Names
Adriano dos Santos Fernandes

Tracker ticket CORE-749

The maximum length of objects names from this version forward is 63 characters, up from the
previous maximum of 31 bytes.

Multi-byte identifiers can also be long now. For example, the previous limit allowed only 15 Cyrillic
characters; now, they could be up to 63.

 Double quotes around a column name are not counted.

Restricting the Length

If, for some reason, you need to restrict the maximum size of object names, either globally or for
individual databases, two new configuration parameters are available in firebird.conf and/or
databases.conf: see Parameters to Restrict Length of Object Identifiers in the Configuration chapter
for further details.

New Data Types
New data types implemented in Firebird 4.0:

Data Type INT128

Alex Peshkov

Tracker ticket CORE-6342

Chapter 9. Data Definition Language (DDL)

94

http://tracker.firebirdsql.org/browse/CORE-749
http://tracker.firebirdsql.org/browse/CORE-6342

For details, see Increased Precision for Exact Numeric Types later in this chapter.

Data Types TIME WITH TIME ZONE and TIMESTAMP WITH TIME ZONE

Adriano dos Santos Fernandes

Tracker tickets CORE-694

For details, see Data Type Extensions for Time Zone Support later in this chapter.

Data Type DECFLOAT

Alex Peshkov

Tracker ticket CORE-5525

DECFLOAT is an SQL:2016 standard-compliant numeric type that stores floating-point numbers
precisely (decimal floating-point type), unlike FLOAT or DOUBLE PRECISION that provide a binary
approximation of the purported precision. Firebird 4 accords with the IEEE 754-1985 standard
types Decimal64 and Decimal128 by providing both 16-digit and 34-digit precision for this type.

All intermediate calculations are performed with 34-digit values.

16-digit and 34-digit

The “16” and “34” refer to the maximum precision in Base-10 digits. See
https://en/wikipedia.org/wiki/iEEE_754#Basic_and_interchange_formats for a
comprehensive table.

Syntax Rules

DECFLOAT(16)
DECFLOAT(34)
DECFLOAT

The default precision is 34 digits, i.e., if DECFLOAT is declared with no parameter, it will be defined as
DECFLOAT(34). Storage complies with IEEE 754, storing data as 64 and 128 bits, respectively.

Examples

DECLARE VARIABLE VAR1 DECFLOAT(34);
--
CREATE TABLE TABLE1 (FIELD1 DECFLOAT(16));

The precision of the DECFLOAT column or domain is stored in the system table
RDB$FIELDS, in RDB$FIELD_PRECISION.

Chapter 9. Data Definition Language (DDL)

95

http://tracker.firebirdsql.org/browse/CORE-694
http://tracker.firebirdsql.org/browse/CORE-5525
https://en/wikipedia.org/wiki/iEEE_754#Basic_and_interchange_formats

Aspects of DECFLOAT Usage

Length of Literals

The length of DECFLOAT literals cannot exceed 1024 characters. Scientific notation is required for
longer values. For example, 0.0<1020 zeroes>11 cannot be used as a literal, the equivalent in
scientific notation, 1.1E-1022 is valid. Similarly, 10<1022 zeroes>0 can be presented as 1.0E1024.

Use with Standard Functions

A number of standard scalar functions can be used with expressions and values of the DECFLOAT
type. They are:

ABS CEILING EXP FLOOR LN

LOG LOG10 POWER SIGN SQRT

The aggregate functions SUM, AVG, MAX and MIN work with DECFLOAT data, as do all of the statistics
aggregates (including but not limited to STDDEV or CORR).

Special Functions for DECFLOAT

Firebird supports four functions, designed to support DECFLOAT data specifically:

COMPARE_DECFLOAT

compares two DECFLOAT values to be equal, different or unordered

NORMALIZE_DECFLOAT

takes a single DECFLOAT argument and returns it in its simplest form

QUANTIZE

takes two DECFLOAT arguments and returns the first argument scaled using the second value as a
pattern

TOTALORDER

performs an exact comparison on two DECFLOAT values

Detailed descriptions are in the DML chapter, in the topic Special Functions for DECFLOAT.

Session Control Operator SET DECFLOAT

Firebird supports the session control operator SET DECFLOAT that allows to change the DECFLOAT data
type properties. For details, see Setting DECFLOAT Properties in the Management Statements
chapter.

DDL Enhancements
Enhancements have been added to the SQL data definition language lexicon in Firebird 4 include a
new, high-precision floating-point data type as well as other extensions.

New and extended DDL statements supporting the new security features are described in the

Chapter 9. Data Definition Language (DDL)

96

Security chapter.

Increased Precision for Exact Numeric Types

Alex Peshkov

Fixed types NUMERIC and DECIMAL can now be defined with up to 38 digits precision. Any value with
precision higher than 18 digits will be stored as a 38-digit number. There’s also an explicit INT128
integer data type with 128-bit (up to 38 decimal digits) storage.

Syntax rules

INT128
NUMERIC [(P [, S])]
DECIMAL [(P [, S])]

where P is precision (P <= 38, previously limited to 18 digits), and the optional S is scale, as
previously, i.e., the number of digits after the decimal separator.

Storage for P >= 19 is a 128-bit signed integer.

Examples

1. Declare a variable of 25 digits to behave like an integer:

DECLARE VARIABLE VAR1 DECIMAL(25);

2. Define a column to accommodate up to 38 digits, with 19 decimal places:

CREATE TABLE TABLE1 (FIELD1 NUMERIC(38, 19));

3. Define a procedure with input parameter defined as 128-bit integer:

CREATE PROCEDURE PROC1 (PAR1 INT128) AS BEGIN END;

Numerics with precision less than 19 digits use SMALLINT, INTEGER, BIGINT or DOUBLE
PRECISION as the base datatype, depending on the number of digits and SQL dialect.
When precision is between 19 and 38 digits a 128-bit integer is used for internal
storage, and the actual precision is always extended to the full 38 digits.

For complex calculations, those digits are cast internally to DECFLOAT(34). The
result of various mathematical operations, such as LOG(), EXP() and so on, and
aggregate functions using a high precision numeric argument, will be
DECFLOAT(34).

Chapter 9. Data Definition Language (DDL)

97

Standard Compliance for Data Type FLOAT

Mark Rotteveel

FLOAT data type was enhanced to support precision in binary digits as defined in the SQL:2016
specification. The approximate numeric types supported by Firebird are a 32-bit single precision
and a 64-bit double precision binary floating-point type. These types are available with the
following SQL standard type names:

• REAL : 32-bit single precision (synonym for FLOAT)

• FLOAT : 32-bit single precision

• FLOAT(P) where P is the precision of the significand in binary digits

◦ 1 <= P <= 24 : 32-bit single precision (synonym for FLOAT)

◦ 25 <= P <= 53 : 64-bit double precision (synonym for DOUBLE PRECISION)

• DOUBLE PRECISION : 64-bit double precision

In addition the following non-standard type names are supported:

• LONG FLOAT : 64-bit double precision (synonym for DOUBLE PRECISION)

• LONG FLOAT(P) where P is the precision of the significand in binary digits (1 <= P <= 53 : synonym
for DOUBLE PRECISION)

These non-standard type names are deprecated and they may be removed in a future version.

Compatibility Notes

1. REAL has been available as a synonym for FLOAT since Firebird 1.0 and even
earlier, but was never documented.

2. Firebird 3.0 and earlier supported FLOAT(P) where P was the approximate
precision in decimal digits, with 0 <= P <= 7 mapped to 32-bit single precision
and P > 7 mapped to 64-bit double precision. This syntax was never
documented.

3. For P in FLOAT(P), the values 1 <= P <= 24 are all treated as P = 24, values 25 <= P
<= 53 are all handled as P = 53.

4. Firebird 3.0 and earlier supported LONG FLOAT(P) where P was the approximate
precision in decimal digits, where any value for P mapped to 64-bit double
precision. This type name and syntax were never documented.

5. For P in LONG FLOAT(P), the values 1 <= P <= 53 are all handled as P = 53.

Data Type Extensions for Time Zone Support

Adriano dos Santos Fernandes

The syntax for declaring the data types TIMESTAMP and TIME has been extended to include arguments
defining whether the column, domain, parameter or variable should be defined with or without
time zone adjustments, i.e.,

Chapter 9. Data Definition Language (DDL)

98

TIME [{ WITHOUT | WITH } TIME ZONE]

TIMESTAMP [{ WITHOUT | WITH } TIME ZONE]

For a summary of the effects of time zone support on existing data and application
code, refer to Changes in DDL and DML Due to Timezone Support in the
Compatibility chapter.

Storage

Data of types TIME/TIMESTAMP WITH TIME ZONE are stored respectively with the same storage as
TIME/TIMESTAMP WITHOUT TIME ZONE plus two extra bytes for the time zone identifier or displacement.

• The time/timestamp parts, translated from the informed time zone, are stored in UTC.

• Time zone identifiers (from regions) are put directly in the time_zone bytes. They start from
65535, for the GMT code, decreasing as new time zones are added.

The time zone literals, together with their time zone identifiers, can be obtained from the
RDB$TIME_ZONES system table.

• Time zone displacements (+/- HH:MM) are encoded with (sign * (HH * 60 + MM)) + 1439.

For example, a 00:00 displacement is encoded as (1 * (0 * 60 + 0)) + 1439 = 1439 and -02:00
as (-1 * (2 * 60 + 0)) + 1439 = 1319.

The default for both TIME and TIMESTAMP is WITHOUT TIME ZONE.

See also Management Statements Pertaining to Time Zone Support in the Management Statements
chapter.

Aliases for Binary String Types

Dimitry Sibiryakov

Tracker ticket CORE-5064

Data types named BINARY(n), VARBINARY(n) and BINARY VARYING(n) have been added to the lexicon as
optional aliases for defining string columns in CHARACTER SET OCTETS.

BINARY(n) is an alias for CHAR(n) CHARACTER SET OCTETS, while VARBINARY(n) and BINARY VARYING(n) are
aliases for VARCHAR(n) CHARACTER SET OCTETS and for each other.

Extensions to the IDENTITY Type

Adriano dos Santos Fernandes

An IDENTITY column is one that is formally associated with an internal sequence generator and has
its value set automatically when omitted from an INSERT statement.

Chapter 9. Data Definition Language (DDL)

99

http://tracker.firebirdsql.org/browse/CORE-5064

The IDENTITY sub-type was introduced in Firebird 3 and has undergone a number of extensions in
version 4, including implementation of DROP IDENTITY, the GENERATED ALWAYS and OVERRIDE directives,
and the INCREMENT BY option.

Extended Syntax for Managing IDENTITY Columns

<column definition> ::=
 name <type> GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(<identity column
option>...)] <constraints>

<identity column option> ::=
 START WITH value | INCREMENT [BY] value

<alter column definition> ::=
 name <set identity column generation clause> [<alter identity column option>...] |
 name <alter identity column option>... |
 name DROP IDENTITY

<set identity column generation clause> ::=
 SET GENERATED { ALWAYS | BY DEFAULT }

<alter identity column option> ::=
 RESTART [WITH value] | SET INCREMENT [BY] value

Rules and Characteristics

• The type of an identity column must be an exact number type with zero scale, comprising
SMALLINT, INTEGER, BIGINT, NUMERIC(p,0) and DECIMAL(p,0) with 1 <= p <= 18.

• Identity columns cannot have a DEFAULT value or be defined as COMPUTED BY <expr>

• A regular column cannot be altered to be an identity column

• Identity columns cannot be defined or made non-nullable

• The engine does not enforce uniqueness automatically. A unique constraint or index of the
required kind must be defined explicitly.

• An INCREMENT value cannot be zero

The Firebird 4 Extensions to IDENTITY

The Firebird 3 implementation was minimal, effectively formalizing the traditional way of
implementing generated keys in Firebird, without many options. Firebird 4 puts some meat on
those bones.

The GENERATED ALWAYS and BY DEFAULT Directives

Tracker ticket CORE-5463

The earlier implementation behaved like the traditional Firebird setup for generating integer keys
automatically when the column was omitted from the insert operation’s column list. If the column
was not listed, the IDENTITY generator would supply the value.

Chapter 9. Data Definition Language (DDL)

100

http://tracker.firebirdsql.org/browse/CORE-5463

A GENERATED BY clause is mandatory. The GENERATED BY DEFAULT directive, present in the Firebird 3
syntax, implemented this behaviour formally without the alternative GENERATED ALWAYS option:

create table objects (
 id integer generated BY DEFAULT as
 identity primary key,
 name varchar(15)
);

insert into objects (name) values ('Table');
insert into objects (name) values ('Book');
insert into objects (id, name) values (10, 'Computer');

select * from objects order by id;

commit;

 ID NAME
============ ===============
 1 Table
 2 Book
 10 Computer

The GENERATED ALWAYS directive introduces alternative behaviour that enforces the use of the
identity generator, whether or not the user supplies a value.

Overriding the defined behaviour

For one-off cases this enforcement can be overridden in DML by including an
OVERRIDING SYSTEM VALUE clause.

On the other hand, for one-off cases where you want to override the defined action
for a column defined with the GENERATED BY DEFAULT directive to behave as though
it were defined as GENERATED ALWAYS and ignore any DML-supplied value, the clause
OVERRIDING USER VALUE is available.

For more details, see OVERRIDING Clause for IDENTITY Columns in the Data
Manipulation Language chapter.

Changing the Defined Behaviour

The ALTER COLUMN clause of ALTER TABLE now has syntax for changing the default GENERATED
behaviour from BY DEFAULT to ALWAYS, or vice versa:

alter table objects
 alter id
 SET GENERATED ALWAYS;

Chapter 9. Data Definition Language (DDL)

101

DROP IDENTITY Clause

Tracker ticket CORE-5431

For a situation where you want to drop the IDENTITY property from a column but retain the data,
the DROP IDENTITY clause is available to the ALTER TABLE statement:

alter table objects
 alter id
 DROP IDENTITY;

INCREMENT BY Option for IDENTITY Columns

Tracker ticket CORE-5430

By default, identity columns start at 1 and increment by 1. The INCREMENT BY option can now be used
to set the increment for some positive or negativestep, i.e., 1 or more or -1 or less:

create table objects (
 id integer generated BY DEFAULT as
 identity (START WITH 10000 INCREMENT BY 10)
 primary key,
 name varchar(15)
);

Changing the Increment (Step) Value

For changing the step value of the sequence produced by an IDENTITY generator, the SET INCREMENT
clause is available in the ALTER TABLE statement syntax:

alter table objects
 alter id SET INCREMENT BY 5;

1. Changing the step value does not affect existing data.

2. It is not necessary to specify SET INCREMENT BY 1 for a new column, nor for one
that has not been altered previously, as the default step is 1.

Implementation

Two columns have been added to RDB$RELATION_FIELDS: RDB$GENERATOR_NAME and RDB$IDENTITY_TYPE.
RDB$GENERATOR_NAME stores the automatically created generator for the column.

In RDB$GENERATORS, the value of RDB$SYSTEM_FLAG of that generator will be 6. RDB$IDENTITY_TYPE stores
the value 0 for GENERATED ALWAYS, 1 for GENERATED BY DEFAULT, and NULL for non-identity columns.

Chapter 9. Data Definition Language (DDL)

102

http://tracker.firebirdsql.org/browse/CORE-5431
http://tracker.firebirdsql.org/browse/CORE-5430

Excess parameters in EXECUTE STATEMENT

Vlad Khorsun

Input parameters of the EXECUTE STATEMENT command may be prefixed by the EXCESS keyword. If
EXCESS is specified, then the given parameter may be omitted from the query text.

Example

CREATE PROCEDURE P_EXCESS (A_ID INT, A_TRAN INT = NULL, A_CONN INT = NULL)
 RETURNS (ID INT, TRAN INT, CONN INT)
AS
DECLARE S VARCHAR(255);
DECLARE W VARCHAR(255) = '';
BEGIN
 S = 'SELECT * FROM TTT WHERE ID = :ID';

 IF (A_TRAN IS NOT NULL)
 THEN W = W || ' AND TRAN = :a';

 IF (A_CONN IS NOT NULL)
 THEN W = W || ' AND CONN = :b';

 IF (W <> '')
 THEN S = S || W;

 -- could raise error if TRAN or CONN is null
 -- FOR EXECUTE STATEMENT (:S) (a := :A_TRAN, b := A_CONN, id := A_ID)

 -- OK in all cases
 FOR EXECUTE STATEMENT (:S) (EXCESS a := :A_TRAN, EXCESS b := A_CONN, id := A_ID)
 INTO :ID, :TRAN, :CONN
 DO SUSPEND;
END

Replication Management

Dmitry Yemanov

Once replication is set up in the replication.conf configuration file, it can be enabled/disabled at
runtime using the special extension to the ALTER DATABASE statement. Also, the replication set (i.e.
tables to be replicated) can be customized using the extensions to the ALTER DATABASE and
CREATE/ALTER TABLE statements.

Extended Syntax for Replication Management

Chapter 9. Data Definition Language (DDL)

103

ALTER DATABASE ... [<database replication management>]

CREATE TABLE tablename ... [<replication state>]
ALTER TABLE tablename ... [<replication state>]

<database replication management> ::=
 <replication state> |
 INCLUDE <replication set> TO PUBLICATION |
 EXCLUDE <replication set> FROM PUBLICATION

<replication state> ::=
 ENABLE PUBLICATION |
 DISABLE PUBLICATION

<replication set> ::=
 ALL |
 TABLE tablename [, tablename ...]

Comments

• All replication management commands are DDL statements and thus effectively executed at the
transaction commit time.

• ALTER DATABASE ENABLE PUBLICATION allows replication to begin (or continue) with the next
transaction started after this transaction commits.

• ALTER DATABASE DISABLE PUBLICATION disables replication immediately after commit.

• If INCLUDE ALL TO PUBLICATION clause is used, then all tables created afterwards will also be
replicated, unless overridden explicitly in the CREATE TABLE statement.

• If EXCLUDE ALL FROM PUBLICATION clause is used, then all tables created afterwards will not be
replicated, unless overridden explicitly in the CREATE TABLE statement.

Chapter 9. Data Definition Language (DDL)

104

Chapter 10. Data Manipulation Language
(DML)
In this chapter are the additions and improvements that have been added to the SQL data
manipulation language subset in Firebird 4.0.

Quick Links
• Lateral Derived Tables

• DEFAULT Context Value for Inserting and Updating

• OVERRIDING Clause for IDENTITY Columns

• Frames for Window Functions

• Named Windows

• More Window Functions

• FILTER Clause for Aggregate Functions

• Optional AUTOCOMMIT for SET TRANSACTION

• Sharing Transaction Snapshots

• Expressions and Built-in Functions

• UDF Changes

• Improve Error Message for an Invalid Write Operation

• Improved Failure Messages for Expression Indexes

• RETURNING * Now Supported

Lateral Derived Tables
Dmitry Yemanov

Tracker ticket CORE-3435

A derived table defined with the LATERAL keyword is called a lateral derived table. If a derived table
is defined as lateral, then it is allowed to refer to other tables in the same FROM clause, but only those
declared before it in the FROM clause.

The feature is defined in (SQL:2011): 7.6 <table reference> (Feature T491).

Chapter 10. Data Manipulation Language (DML)

105

http://tracker.firebirdsql.org/browse/CORE-3435

Examples

select dt.population, dt.city_name, c.country_name
from (select distinct country_name from cities) AS c,
 LATERAL (select first 1 city_name, population
 from cities
 where cities.country_name = c.country_name
 order by population desc) AS dt;
--
select salespeople.name,
 max_sale.amount,
 customer_of_max_sale.customer_name
from salespeople,
 LATERAL (select max(amount) as amount from all_sales
 where all_sales.salesperson_id = salespeople.id
) as max_sale,
 LATERAL (select customer_name from all_sales
 where all_sales.salesperson_id = salespeople.id
 and all_sales.amount = max_sale.amount
) as customer_of_max_sale;

DEFAULT Context Value for Inserting and Updating
Adriano dos Santos Fernandes

Tracker ticket CORE-5449

Support has been implemented to enable the declared default value for a column or domain to be
included directly in INSERT, UPDATE, MERGE and UPDATE OR INSERT statements by use of the keyword
DEFAULT in the column’s position. If DEFAULT appears in the position of a column that has no default
value defined, the engine will attempt to write NULL to that column.

The feature is defined in (SQL:2011): 6.5 <contextually typed value specification>.

Simple Examples

insert into sometable (id, column1)
values (DEFAULT, 'name')
--
update sometable
 set column1 = 'a', column2 = default

Chapter 10. Data Manipulation Language (DML)

106

http://tracker.firebirdsql.org/browse/CORE-5449

If id is an identity column, the identity value will be generated, even if there is an
UPDATE … SET command associated with the column.

If DEFAULT is specified on a computed column, the parser will allow it but it will
have no effect.

In columns populated by triggers in the traditional way, the value from DEFAULT
enters the NEW context variable of any BEFORE INSERT or BEFORE UPDATE trigger.

DEFAULT vs DEFAULT VALUES

Since version 2.1, Firebird has supported the DEFAULT VALUES clause. The two clauses are not the
same. The DEFAULT clause applies to an individual column in the VALUES list, while DEFAULT VALUES
applies to the row to be inserted as a whole. A statement like INSERT INTO sometable DEFAULT VALUES
is equivalent to INSERT INTO sometable VALUES (DEFAULT, …) with as many DEFAULT in the VALUES
list as there are columns in sometable.

OVERRIDING Clause for IDENTITY Columns
Adriano dos Santos Fernandes

Tracker ticket CORE-5463

Identity columns defined with the BY DEFAULT attribute can be overridden in statements that insert
rows (INSERT, UPDATE OR INSERT, MERGE … WHEN NOT MATCHED) just by specifying the value in the values
list. For identity columns defined with the GENERATE ALWAYS attribute, that kind of override is not
allowed.

Making the value passed in the INSERT statement for an ALWAYS column acceptable to the engine
requires use of the OVERRIDING clause with the SYSTEM VALUE sub-clause, as illustrated below:

insert into objects (id, name)
 OVERRIDING SYSTEM VALUE values (11, 'Laptop');

OVERRIDING supports another sub-clause, USER VALUE, for use with BY DEFAULT columns to direct the
engine to ignore the value passed in INSERT and use the sequence defined for the identity column:

insert into objects (id, name)
 OVERRIDING USER VALUE values (12, 'Laptop'); -- 12 is not used

Extension of SQL Windowing Features
Adriano dos Santos Fernandes

The OVER clause for Window functions in Firebird now supports not just the sub-clauses PARTITION
and ORDER subclauses but also frames and windows with names that can be re-used in the same

Chapter 10. Data Manipulation Language (DML)

107

http://tracker.firebirdsql.org/browse/CORE-5463

query.

The pattern for Firebird 4 windowing syntax is as follows:

Syntax Pattern

<window function> ::=
 <window function name>([<expr> [, <expr> ...]])
 OVER {<window specification> | existing_window_name}

<window specification> ::=
 ([existing_window_name] [<window partition>] [<window order>] [<window frame>])

<window partition> ::=
 PARTITION BY <expr> [, <expr> ...]

<window order> ::=
 ORDER BY <expr> [<direction>] [<nulls placement>]
 [, <expr> [<direction>] [<nulls placement>]] ...

<window frame> ::=
 {RANGE | ROWS} <window frame extent>

<window frame extent> ::=
 {<window frame start> | <window frame between>}

<window frame start> ::=
 {UNBOUNDED PRECEDING | <expr> PRECEDING | CURRENT ROW}

<window frame between> ::=
 BETWEEN <window frame bound 1> AND <window frame bound 2>

<window frame bound 1> ::=
 {UNBOUNDED PRECEDING | <expr> PRECEDING | <expr> FOLLOWING | CURRENT ROW}

<window frame bound 2> ::=
 {UNBOUNDED FOLLOWING | <expr> PRECEDING | <expr> FOLLOWING | CURRENT ROW}

<direction> ::=
 {ASC | DESC}

<nulls placement> ::=
 NULLS {FIRST | LAST}

<query spec> ::=
 SELECT
 [<limit clause>]
 [<distinct clause>]
 <select list>
 <from clause>
 [<where clause>]

Chapter 10. Data Manipulation Language (DML)

108

 [<group clause>]
 [<having clause>]
 [<named windows clause>]
 [<plan clause>]

<named windows clause> ::=
 WINDOW <window definition> [, <window definition>] ...

<window definition> ::=
 new_window_name AS <window specification>

Frames for Window Functions

Tracker ticket CORE-3647

A frame can be specified, within which certain window functions are to work.

The following extract from the syntax pattern above explains the elements that affect frames:

Syntax Elements for Frames

<window frame> ::=
 {RANGE | ROWS} <window frame extent>

<window frame extent> ::=
 {<window frame start> | <window frame between>}

<window frame start> ::=
 {UNBOUNDED PRECEDING | <expr> PRECEDING | CURRENT ROW}

<window frame between> ::=
 BETWEEN <window frame bound 1> AND <window frame bound 2>

<window frame bound 1> ::=
 {UNBOUNDED PRECEDING | <expr> PRECEDING | <expr> FOLLOWING | CURRENT ROW}

<window frame bound 2> ::=
 {UNBOUNDED FOLLOWING | <expr> PRECEDING | <expr> FOLLOWING | CURRENT ROW}

The frame comprises three pieces: unit, start bound and end bound. The unit can be RANGE or ROWS
and defines how the bounds will work. The bounds are:

<expr> PRECEDING

<expr> FOLLOWING

CURRENT ROW

• With RANGE, the ORDER BY should specify only one expression, and that expression should be of a
numeric, date, time or timestamp type. For <expr> PRECEDING and <expr> FOLLOWING bounds,
<expr> is subtracted from the order expression in the case of PRECEDING and added to it in the

Chapter 10. Data Manipulation Language (DML)

109

http://tracker.firebirdsql.org/browse/CORE-3647

case of FOLLOWING. For CURRENT ROW, the order expression is used as-is.

All rows inside the partition that are between the bounds are considered part of the resulting
window frame.

• With ROWS, order expressions are not limited by number or type. For this unit, <expr> PRECEDING,
<expr> FOLLOWING and CURRENT ROW relate to the row position under the partition, and not to the
values of the ordering keys.

UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING work identically with RANGE and ROWS. UNBOUNDED
PRECEDING looks for the first row and UNBOUNDED FOLLOWING the last one, always inside the partition.

The frame syntax with <window frame start> specifies the start frame, with the end frame being
CURRENT ROW.

Some window functions discard frames:

• ROW_NUMBER, LAG and LEAD always work as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

• DENSE_RANK, RANK, PERCENT_RANK and CUME_DIST always work as RANGE BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW.

• FIRST_VALUE, LAST_VALUE and NTH_VALUE respect frames, but the RANGE unit behaviour is identical to
ROWS.

Navigational Functions with Frames

Navigational functions, implemented in Firebird 3, get the simple (non-aggregated) value of an
expression from another row that is within the same partition. They can operate on frames. These
are the syntax patterns:

<navigational window function> ::=
 FIRST_VALUE(<expr>) |
 LAST_VALUE(<expr>) |
 NTH_VALUE(<expr>, <offset>) [FROM FIRST | FROM LAST] |
 LAG(<expr> [[, <offset> [, <default>]]) |
 LEAD(<expr> [[, <offset> [, <default>]])

The default frame is RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW which might produce
strange results when a frame with these properties is operated on by FIRST_VALUE, NTH_VALUE or,
particularly, LAST_VALUE.

Example Using Frames

When the ORDER BY window clause is used, but a frame clause is omitted, the default frame just
described causes the query below to produce weird behaviour for the sum_salary column. It sums
from the partition start to the current key, instead of summing the whole partition.

Chapter 10. Data Manipulation Language (DML)

110

select
 id,
 salary,
 sum(salary) over (order by salary) sum_salary
 from employee
 order by salary;

Result:

id	salary	sum_salary
3	8.00	8.00
4	9.00	17.00
1	10.00	37.00
5	10.00	37.00
2	12.00	49.00

A frame can be set explicitly to sum the whole partition, as follows:

select
 id,
 salary,
 sum(salary) over (
 order by salary
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) sum_salary
 from employee
 order by salary;

Result:

id	salary	sum_salary
3	8.00	49.00
4	9.00	49.00
1	10.00	49.00
5	10.00	49.00
2	12.00	49.00

This query “fixes” the weird nature of the default frame clause, producing a result similar to a
simple OVER () clause without ORDER BY.

We can use a range frame to compute the count of employees with salaries between (an employee’s
salary - 1) and (his salary + 1) with this query:

Chapter 10. Data Manipulation Language (DML)

111

select
 id,
 salary,
 count(*) over (
 order by salary
 RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING
) range_count
 from employee
 order by salary;

Result:

id	salary	range_count
3	8.00	2
4	9.00	4
1	10.00	3
5	10.00	3
2	12.00	1

Named Windows

Tracker ticket CORE-5346

In a query with the WINDOW clause, a window can be explicitly named to avoid repetitive or
confusing expressions.

A named window can be used

a. in the OVER element to reference a window definition, e.g. OVER <window-name>

b. as a base window of another named or inline (OVER) window, if it is not a window with a frame
(ROWS or RANGE clauses).

a window with a base window cannot have PARTITION BY, nor override the
ordering (ORDER BY sequence) of a base window.

In a query with multiple SELECT and WINDOW clauses (for example, with subqueries), the scope of the
window name is confined to its query context. That means a window name from an inner context
cannot be used in an outer context, nor vice versa. However, the same window name definition can
be used independently in different contexts.

Chapter 10. Data Manipulation Language (DML)

112

http://tracker.firebirdsql.org/browse/CORE-5346

Example Using Named Windows

select
 id,
 department,
 salary,
 count(*) over w1,
 first_value(salary) over w2,
 last_value(salary) over w2
 from employee
 window w1 as (partition by department),
 w2 as (w1 order by salary)
 order by department, salary;

More Window Functions

Adriano dos Santos Fernandes; Hajime Nakagami

Tracker ticket CORE-1688

More SQL:2003 window functions — the ranking functions PERCENT_RANK, CUME_DIST and NTILE.

Ranking Functions

<ranking window function> ::=
 DENSE_RANK() |
 RANK() |
 PERCENT_RANK() |
 CUME_DIST() |
 NTILE(<expr>) |
 ROW_NUMBER()

Ranking functions compute the ordinal rank of a row within the window partition. The basic
functions in this category, present since Firebird 3, are DENSE_RANK, RANK and ROW_NUMBER. These
function enable creation of various types of incremental counters to generate sets in ways that are
analogous with operations such as SUM(1) OVER (ORDER BY SALARY).

The new functions implemented in Firebird 4 are:

• PERCENT_RANK is a ratio of RANK to group count.

• CUME_DIST is the cumulative distribution of a value in a group.

• NTILE takes an argument and distributes the rows into the specified number of groups. The
argument is restricted to integral positive literal, variable (:var) and DSQL parameter (?).

The following example illustrates the behaviour of ranking functions. SUM is included for
comparison.

Chapter 10. Data Manipulation Language (DML)

113

http://tracker.firebirdsql.org/browse/CORE-1688

Simple Example

select
 id,
 salary,
 dense_rank() over (order by salary),
 rank() over (order by salary),
 percent_rank() over (order by salary),
 cume_dist() over (order by salary),
 ntile(3) over (order by salary),
 row_number() over (order by salary),
 sum(1) over (order by salary)
 from employee
 order by salary;

The result set looks something like the following, although trailing zeroes have been truncated here
in order to fit the lines to the document page:

id salary dense_rank rank percent_rank cume_dist ntile row_number sum
3 8.00 1 1 0.0000000 0.20000000 1 1 1
4 9.00 2 2 0.2500000 0.40000000 1 2 2
1 10.00 3 3 0.5000000 0.80000000 2 3 4
5 10.00 3 3 0.5000000 0.80000000 2 4 4
2 12.00 4 5 1.0000000 1.00000000 3 5 5

FILTER Clause for Aggregate Functions
Adriano dos Santos Fernandes

Tracker ticket CORE-5768

The FILTER clause extends aggregate functions (sum, avg, count, etc.) with an additional WHERE clause.
The set returned is the aggregate of the rows that satisfy the conditions of both the main WHERE
clause and those inside the FILTER clause(s).

It can be thought of as a shortcut for situations where one would use an aggregate function with
some condition (decode, case, iif) to ignore some of the values that would be considered by the
aggregation.

The clause can be used with any aggregate functions in aggregate or windowed (OVER) statements,
but not with window-only functions like DENSE_RANK.

Example

Suppose you have a query where you want to count the number of status = 'A' and the number of
status = 'E' as different columns. The old way to do it would be:

Chapter 10. Data Manipulation Language (DML)

114

http://tracker.firebirdsql.org/browse/CORE-5768

select count(decode(status, 'A', 1)) status_a,
 count(decode(status, 'E', 1)) status_e
 from data;

The FILTER clause lets you express those conditions more explicitly:

select count(*) filter (where status = 'A') status_a,
 count(*) filter (where status = 'E') status_e
 from data;

You can use more than one FILTER modifier in an aggregate query. You could, for
example, use 12 filters on totals aggregating sales for a year to produce monthly
figures for a pivot set

Syntax for FILTER Clauses

aggregate_function [FILTER (WHERE <condition>)] [OVER (<window>)]

Optional AUTOCOMMIT for SET TRANSACTION
Dmitry Yemanov

Tracker ticket CORE-5119

Autocommit mode is now supported in the SET TRANSACTION statement syntax.

Example

SET TRANSACTION SNAPSHOT NO WAIT AUTO COMMIT;

Sharing Transaction Snapshots
Adriano dos Santos Fernandes

Tracker ticket CORE-6018

With this feature it’s possible to create parallel processes (using different attachments) reading
consistent data from a database. For example, a backup process may create multiple threads
reading data from the database in parallel. Or a web service may dispatch distributed sub-services
doing some processing in parallel.

For this purpose, the SET TRANSACTION statement is extended with the SNAPSHOT [AT NUMBER
snapshot_number] option. Alternatively, this feature can also be used via API, new Transaction
Parameter Buffer item isc_tpb_at_snapshot_number <snapshot number length> snapshot number is

Chapter 10. Data Manipulation Language (DML)

115

http://tracker.firebirdsql.org/browse/CORE-5119
http://tracker.firebirdsql.org/browse/CORE-6018

added for this purpose.

The snapshot_number from an active transaction can be obtained with RDB$GET_CONTEXT('SYSTEM',
'SNAPSHOT_NUMBER') in SQL or using the transaction information API call with
fb_info_tra_snapshot_number information tag. Note that the snapshot_number passed to the new
transaction must be a snapshot of a currently active transaction.

Example

SET TRANSACTION SNAPSHOT AT NUMBER 12345;

Expressions and Built-in Functions
Additions and changes to the sets of built-in functions and expressions in Firebird 4.

New Functions and Expressions

Built-in functions and expressions added in Firebird 4.0.

Functions & Expressions for Timezone Operations

Adriano dos Santos Fernandes

Expressions and built-in functions for timezone operations.

AT Expression

Translates a time/timestamp value to its corresponding value in another time zone. If LOCAL is used,
the value is converted to the session time zone.

Syntax

<at expr> ::= <expr> AT { TIME ZONE <time zone string> | LOCAL }

Examples

select time '12:00 GMT' at time zone '-03:00' from rdb$database;
select current_timestamp at time zone 'America/Sao_Paulo' from rdb$database;
select timestamp '2018-01-01 12:00 GMT' at local from rdb$database;

LOCALTIME Expression

Returns the current time as a TIME WITHOUT TIME ZONE, in the session time zone.

Example

select localtime from rdb$database;

Chapter 10. Data Manipulation Language (DML)

116

LOCALTIMESTAMP Expression

Returns the current timestamp as a TIMESTAMP WITHOUT TIME ZONE, in the session time zone.

Example

select localtimestamp from rdb$database;

Two New Date/Time Functions

Adriano dos Santos Fernandes

FIRST_DAY

Returns a date or timestamp (as appropriate) with the first day of the year, month or week of a
given date or timestamp value.

Syntax

FIRST_DAY(OF { YEAR | MONTH | WEEK } FROM <date_or_timestamp>)

a. The first day of the week is considered as Sunday, following the same rules as for EXTRACT
with WEEKDAY

b. When a timestamp is passed the return value preserves the time part

Examples

select first_day(of month from current_date) from rdb$database;
select first_day(of year from current_timestamp) from rdb$database;
select first_day(of week from date '2017-11-01') from rdb$database;

LAST_DAY

Returns a date or timestamp (as appropriate) with the last day of the year, month or week of a
given date or timestamp value.

Syntax

LAST_DAY(OF { YEAR | MONTH | WEEK } FROM <date_or_timestamp>)

a. The last day of the week is considered as Saturday, following the same rules as for EXTRACT
with WEEKDAY

b. When a timestamp is passed the return value preserves the time part

Examples

select last_day(of month from current_date) from rdb$database;
select last_day(of year from current_timestamp) from rdb$database;
select last_day(of week from date '2017-11-01') from rdb$database;

Chapter 10. Data Manipulation Language (DML)

117

Security Functions

Two new built-in functions were added to support the new security features. They are not
described here — the descriptions are located in the Security chapter. They are:

• RDB$SYSTEM_PRIVILEGE

• RDB$ROLE_IN_USE

A number of cryptographic functions were also added. See Built-in Cryptographic Functions in the
Security chapter for syntax and usage details.

Special Functions for DECFLOAT

Firebird supports four functions, designed to support DECFLOAT data specifically:

COMPARE_DECFLOAT

compares two DECFLOAT values to be equal, different or unordered. Returns a SMALLINT value, one
of:

0 Values are equal

1 First value is less than second

2 First value is greater than second

3 Values are unordered, i.e., one or both is NaN / sNaN

Unlike the comparison operators (‘<’, ‘=’, ‘>’, etc.) comparison is exact: COMPARE_DECFLOAT(2.17,
2.170) returns 2, not 0.

NORMALIZE_DECFLOAT

takes a single DECFLOAT argument and returns it in its simplest form. That means that for any
non-zero value, trailing zeros are removed with appropriate correction of the exponent.

For example, NORMALIZE_DECFLOAT(12.00) returns 12 and NORMALIZE_DECFLOAT(120) returns 1.2E+2.

QUANTIZE

takes two DECFLOAT arguments. The returned value is the first argument scaled using the second
value as a pattern.

For example, QUANTIZE(1234, 9.999) returns 1234.000.

There are almost no retrictions on the pattern. However, in almost all usages, sNaN will produce
an exception, NULL will make the function return NULL, and so on.

Chapter 10. Data Manipulation Language (DML)

118

SQL> select v, pic, quantize(v, pic) from examples;

 V PIC QUANTIZE
 ======================= ===================== ==================
 3.16 0.001 3.160
 3.16 0.01 3.16
 3.16 0.1 3.2
 3.16 1 3
 3.16 1E+1 0E+1
 -0.1 1 -0
 0 1E+5 0E+5
 316 0.1 316.0
 316 1 316
 316 1E+1 3.2E+2
 316 1E+2 3E+2

If scaling like the example produces a result that would exceed the precision,
the error “Decimal float invalid operation” is returned.

TOTALORDER

compares two DECFLOAT values including any special value. The comparison is exact. Returns a
SMALLINT value, one of:

-1 First value is less than second

0 Values are equal

1 First value is greater than second

For TOTALORDER comparisons, DECFLOAT values are ordered as follows:

-NaN < -sNaN < -INF < -0.1 < -0.10 < -0 < 0 < 0.10 < 0.1 < INF < sNaN < NaN

Function RDB$GET_TRANSACTION_CN: Supporting Snapshots Based on Commit Order

Vlad Khorsun

See Tracker ticket CORE-5921. For the background, see Commit Order for Capturing the Database
Snapshot in the Engine chapter.

Returns the commit number (“CN”)of the supplied transaction. Result type is BIGINT.

Syntax

RDB$GET_TRANSACTION_CN(<transaction number>)

If the return value is greater than 1, it is the actual CN of the transaction if it was committed after
the database was started.

Chapter 10. Data Manipulation Language (DML)

119

http://tracker.firebirdsql.org/browse/CORE-5921

The function can also return one of the following results, indicating the commit status of the
transaction:

-2 Transaction is dead (rolled back)

-1 Transaction is in limbo

 0 Transaction is still active

 1 Transaction committed before the database started or less than the Oldest Interesting
Transaction for the database

NULL Transaction number supplied is NULL or greater than Next Transaction for the
database

Note about the numerics

Internally, the engine uses unsigned 8-byte integers for commit numbers and
unsigned 6-byte integers for transaction numbers. Thus, although the SQL
language has no unsigned integers and RDB$GET_TRANSACTION_CN returns a signed
BIGINT, a negative commit number will only be returned for the special values
returned for uncommitted transactions.

Examples

select rdb$get_transaction_cn(current_transaction) from rdb$database;
select rdb$get_transaction_cn(123) from rdb$database;

Function MAKE_DBKEY

Vlad Khorsun

Creates a DBKEY value using relation name or ID, record number, and (optionally) logical number
of data page and pointer page. Result type is BINARY(8).

Syntax

MAKE_DBKEY(relation, recnum [, dpnum [, ppnum>]])

Notes

1. If relation is a string expression or literal, then it is treated as a relation name, and the engine
searches for the corresponding relation ID. The search is case-sensitive. In the case of string
literal, relation ID is evaluated at query preparation time. In the case of expression, relation ID
is evaluated at execution time. If the relation could not be found, then error isc_relnotdef is
raised.

2. If relation is a numeric expression or literal, then it is treated as a relation ID and used “as is”,
without verification against existing relations. If the argument value is negative or greater than

Chapter 10. Data Manipulation Language (DML)

120

the maximum allowed relation ID (65535 currently), then NULL is returned.

3. Argument recnum represents an absolute record number in the relation (if the next arguments
dpnum and ppnum are missing), or a record number relative to the first record, specified by the
next arguments.

4. Argument dpnum is a logical number of data page in the relation (if the next argument ppnum is
missing), or number of data page relative to the first data page addressed by the given ppnum.

5. Argument ppnum is a logical number of pointer page in the relation.

6. All numbers are zero-based. Maximum allowed value for dpnum and ppnum is 232 (4294967296).
If dpnum is specified, then recnum could be negative. If dpnum is missing and recnum is
negative, then NULL is returned. If ppnum is specified, then dpnum could be negative. If ppnum is
missing and dpnum is negative, then NULL is returned.

7. If any of specified arguments has NULL value, the result is also NULL.

8. Argument <relation> is described as INTEGER during query preparation, but it can be overridden
by a client application as VARCHAR or CHAR. Arguments recnum, dpnum and ppnum are described
as BIGINT.

Examples

-- (1) Select record using relation name
-- (note: relation name is uppercased)
select * from rdb$relations where rdb$db_key = make_dbkey('RDB$RELATIONS', 0)

-- (2) Select record using relation ID
select * from rdb$relations where rdb$db_key = make_dbkey(6, 0)

-- (3) Select all records physically residing on the first data page
select * from rdb$relations
 where rdb$db_key >= make_dbkey(6, 0, 0)
 and rdb$db_key < make_dbkey(6, 0, 1)

-- (4) Select all records physically residing on the first data page
-- of 6th pointer page
select * from SOMETABLE
 where rdb$db_key >= make_dbkey('SOMETABLE', 0, 0, 5)
 and rdb$db_key < make_dbkey('SOMETABLE', 0, 1, 5)

BASE64_ENCODE() and BASE64_DECODE()

Alex Peshkov

These two functions are for encoding and decoding input data between string and BASE64
representation. They operate with character strings and BLOBs. Considered useful when working
with binary objects, for example with keys.

Chapter 10. Data Manipulation Language (DML)

121

Syntax

BASE64_ENCODE(binary_data)
BASE64_DECODE(base64_data)

Example

select base64_encode(public_key) from clients;

HEX_ENCODE() and HEX_DECODE()

Alex Peshkov

These two functions are for encoding and decoding input data between string and hexadecimal
representation. They operate with character strings and BLOBs.

Syntax

HEX_ENCODE(binary_data)
HEX_DECODE(hex_data)

Example

select hex_encode(binary_string) from clients;

CRYPT_HASH()

Alex Peshkov

Accepts an argument than can be a field, variable or expression of any type recognized by
DSQL/PSQL and returns a cryptographic hash calculated from the input argument using the
specified algorithm.

Syntax

CRYPT_HASH(<any value> USING <algorithm>)

<algorithm> ::= { MD5 | SHA1 | SHA256 | SHA512 }

Example

select crypt_hash(job_title using sha256) from job;

Chapter 10. Data Manipulation Language (DML)

122

• This function returns a VARBINARY string with the length depending on the
specified algorithm.

• MD5 and SHA1 algorithms are not recommended due to known severe issues,
these algorithms are provided for backward compatibility ONLY.

Changes to Built-in Functions and Expressions

Functions changed or extended in this release:

Changes Arising from Timezone Support

EXTRACT Expressions

Two new arguments have been added to the EXTRACT expression:

TIMEZONE_HOUR extracts the time zone hours displacement

TIMEZONE_MINUTE extracts the time zone minutes displacement

Example

select extract(timezone_hour from current_time) from rdb$database;
select extract(timezone_minute from current_timestamp) from rdb$database;

Changes in CURRENT_TIME and CURRENT_TIMESTAMP

In version 4.0, CURRENT_TIME and CURRENT_TIMESTAMP are changed: they now return TIME WITH TIME
ZONE and TIMESTAMP WITH TIME ZONE, with the time zone set by the session time zone. In previous
versions, CURRENT_TIME and CURRENT_TIMESTAMP returned the respective types according to the system
clock, i.e. without any time zone.

To ease the transition, LOCALTIME and LOCALTIMESTAMP were added to versions 3.0.4 and 2.5.9, allowing
developers to adjust application code without any functional changes, before migrating to Firebird
4.

See also Changes in DDL and DML Due to Timezone Support in the Compatibility
chapter.

HASH()

Adriano dos Santos Fernandes

Tracker ticket CORE-4436

Returns a generic hash for the input argument using the specified algorithm.

Chapter 10. Data Manipulation Language (DML)

123

http://tracker.firebirdsql.org/browse/CORE-4436

Syntax

HASH(<any value> [USING <algorithm>])

<algorithm> ::= { CRC32 }

The syntax with the optional USING clause is introduced in FB 4.0 and returns an integer of
appropriate size. CRC32 algorithm implemented by Firebird uses polynomial 0x04C11DB7.

The syntax without the USING clause is still supported. It uses the 64-bit variation of
the non-cryptographic PJW hash function (also known as ELF64):

https://en.wikipedia.org/wiki/PJW_hash_function

which is very fast and can be used for general purposes (hash tables, etc), but its
collision quality is sub-optimal. Other hash functions (specified explicitly in the
USING clause) should be used for more reliable hashing.

Examples

select hash(x using crc32) from y;
--
select hash(x) from y; -- not recommended

SUBSTRING()

A SUBSTRING start position smaller than 1 is now allowed. It has some properties that need to be
taken into consideration for predicting the end of the string value returned.

Examples

select substring('abcdef' from 0) from rdb$database
-- Expected result: 'abcdef'

select substring('abcdef' from 0 for 2) from rdb$database
-- Expected result: 'a' (and NOT 'ab', because there is
-- "nothing" at position 0)

select substring('abcdef' from -5 for 2) from rdb$database
-- Expected result: ''

Those last two examples might not be what you expect. The for length is considered from the
specified from start position, not the start of the string, so the string returned could be shorter than
the specified length, or even empty.

UDF Changes

Many of the UDFs in previous versions became built-in functions. The UDF feature itself is heavily

Chapter 10. Data Manipulation Language (DML)

124

https://en.wikipedia.org/wiki/PJW_hash_function

deprecated in Firebird 4 — see External Functions (UDFs) Feature Deprecated in the Engine
chapter. Most of the remaining UDFs in the ib_udf and fbudf libraries now have analogues, either as
UDRs in the new library udf_compat or as precompiled PSQL functions.

A script in the /misc/upgrade/v4.0/ sub-directory of your installation provides an easy way to
upgrade existing UDF declarations to the safe form that is available for each respective UDF. For
details and instructions, see Deprecation of External Functions (UDFs) in the Compatibility chapter.

New UDR GetExactTimestampUTC

The new UDR GetExactTimestampUTC, in the udf_compat library, takes no input argument and returns
the TIMESTAMP WITH TIME ZONE value at the moment the function is called.

The older function, GetExactTimestamp has been refactored as a stored function, returning, as before,
the TIMESTAMP WITHOUT TIME ZONE value at the moment the function is called.

Miscellaneous DML Improvements
Improvements to behaviour and performance in DML include:

Improve Error Message for an Invalid Write Operation

Adriano dos Santos Fernandes

See Tracker ticket CORE-5874.

When a read-only column is incorrectly targeted in an UPDATE … SET xxx operation, the error
message now provides the name of the affected column.

Improved Failure Messages for Expression Indexes

Adriano dos Santos Fernandes

Tracker ticket CORE-5606

If computation of an expression index fails, the exception message will now include the name of
the index.

RETURNING * Now Supported

Adriano dos Santos Fernandes

Tracker ticket CORE-3808

The engine now supports RETURNING * syntax, and variants, to return a complete set of field values
after committing a row that has been inserted, updated or deleted. The syntax and semantics of
RETURNING * are similar to SELECT *.

Chapter 10. Data Manipulation Language (DML)

125

http://tracker.firebirdsql.org/browse/CORE-5874
http://tracker.firebirdsql.org/browse/CORE-5606
http://tracker.firebirdsql.org/browse/CORE-3808

Examples

INSERT INTO T1 (F1, F2) VALUES (:F1, :F2) RETURNING *

DELETE FROM T1 WHERE F1 = 1 RETURNING *

UPDATE T1 SET F2 = F2 * 10 RETURNING OLD.*, NEW.*

Chapter 10. Data Manipulation Language (DML)

126

Chapter 11. Procedural SQL (PSQL)
Recursion is now supported in sub-routines. A few improvements have been implemented to help
in logging exceptions from the various error contexts supported in PSQL.

Recursion for subroutines
Adriano dos Santos Fernandes

Tracker ticket CORE-5380

Starting in FB 4, subroutines may be recursive or call other subroutines.

A couple of recursive sub-functions in EXECUTE BLOCK

execute block returns (i integer, o integer)
as
 -- Recursive function without forward declaration.
 declare function fibonacci(n integer) returns integer
 as
 begin
 if (n = 0 or n = 1) then
 return n;
 else
 return fibonacci(n - 1) + fibonacci(n - 2);
 end
 begin
 i = 0;

 while (i < 10)
 do
 begin
 o = fibonacci(i);
 suspend;
 i = i + 1;
 end
 end

Chapter 11. Procedural SQL (PSQL)

127

http://tracker.firebirdsql.org/browse/CORE-5380

-- With forward declaration and parameter with default values

execute block returns (o integer)
as
 -- Forward declaration of P1.
 declare procedure p1(i integer = 1) returns (o integer);

 -- Forward declaration of P2.
 declare procedure p2(i integer) returns (o integer);

 -- Implementation of P1 should not re-declare parameter default value.
 declare procedure p1(i integer) returns (o integer)
 as
 begin
 execute procedure p2(i) returning_values o;
 end

 declare procedure p2(i integer) returns (o integer)
 as
 begin
 o = i;
 end
begin
 execute procedure p1 returning_values o;
 suspend;
end

A Helper for Logging Context Errors
A new system function enables the module to pass explicit context information from the error
block to a logging routine.

System Function RDB$ERROR()

Dmitry Yemanov

Tracker tickets CORE-2040 and CORE-1132

The function RDB$ERROR() takes a PSQL error context as input and returns the specific context of the
active exception. Its scope is confined to the context of the exception-handling block in PSQL.
Outside the exception handling block, RDB$ERROR always returns NULL.

The type of the return value depends on the context.

Syntax

RDB$ERROR (<context>)
<context> ::= { GDSCODE | SQLCODE | SQLSTATE | EXCEPTION | MESSAGE }

Chapter 11. Procedural SQL (PSQL)

128

http://tracker.firebirdsql.org/browse/CORE-2040
http://tracker.firebirdsql.org/browse/CORE-1132

Contexts

GDSCODE INTEGER Context variable: refer to documentation

SQLCODE INTEGER Context variable: refer to documentation

SQLSTATE CHAR(5) CHARACTER SET
ASCII

Context variable: refer to documentation

EXCEPTION VARCHAR(63) CHARACTER
SET UTF8

Returns name of the active user-defined
exception or NULL if the active exception is a
system one

MESSAGE VARCHAR(1024)
CHARACTER SET UTF8

Returns interpreted text for the active exception

For descriptions of the context variables GDSCODE, SQLCODE and SQLSTATE, refer to the
Context Variables topic in the Firebird 2.5 Language Reference.

Example of RDB$ERROR

BEGIN
 ...
WHEN ANY DO
 EXECUTE PROCEDURE P_LOG_EXCEPTION(RDB$ERROR(MESSAGE));
END

Allow Management Statements in PSQL Blocks
Adriano dos Santos Fernandes

See Tracker ticket CORE-5887.

In prior Firebird versions, management statements were not allowed inside PSQL blocks. They
were allowed only as top-level SQL statements, or as the top-level statement of an EXECUTE STATEMENT
embedded in a PSQL block.

Now they can be used directly in PSQL blocks (triggers, procedures, EXECUTE BLOCK), which is
especially helpful for applications that need some management statements to be issued at the start
of a session, specifically in ON CONNECT triggers.

The management statements permitted for this usage are:

Chapter 11. Procedural SQL (PSQL)

129

https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref25/firebird-25-language-reference.html#fblangref25-contextvars
http://tracker.firebirdsql.org/browse/CORE-5887

ALTER SESSION RESET
SET BIND
SET DECFLOAT ROUND
SET DECFLOAT TRAPS TO
SET ROLE
SET SESSION IDLE TIMEOUT
SET STATEMENT TIMEOUT
SET TIME ZONE
SET TRUSTED ROLE

Example

create or alter trigger on_connect on connect
as
begin
 set bind of decfloat to double precision;
 set time zone 'America/Sao_Paulo';
end

Chapter 11. Procedural SQL (PSQL)

130

Chapter 12. Monitoring & Command-line
Utilities
Improvements and additions to the Firebird utilities continue.

Monitoring
Additions to MON$ATTACHMENTS and MON$STATEMENTS to report on timeouts and wire status. Refer to
Timeouts at Two levels in the chapter Changes in the Firebird Engine for details.

New columns in the tables:

In MON$DATABASE:

MON$CRYPT_STATE Current state of database encryption (not encrypted = 0, encrypted = 1,
decryption in progress = 2, encryption in progress = 3)

MON$GUID Database GUID (persistent until restore / fixup)

MON$FILE_ID Unique ID of the database file at the filesystem level

MON$NEXT_ATTACHMENT Current value of the next attachment ID counter

MON$NEXT_STATEMENT Current value of the next statement ID counter

MON$REPLICA_MODE Database replica mode (not a replica = 0, read-only replica = 1, read-
write replica = 2)

In MON$ATTACHMENTS:

MON$IDLE_TIMEOUT Connection level idle timeout

MON$IDLE_TIMER Idle timer expiration time

MON$STATEMENT_TIMEOUT Connection level statement timeout

MON$WIRE_COMPRESSED Wire compression (enabled = 1, disabled = 0)

MON$WIRE_ENCRYPTED Wire encryption (enabled = 1, disabled = 0)

MON$WIRE_CRYPT_PLUGIN Name of the wire encryption plugin used by client

In MON$STATEMENTS:

Chapter 12. Monitoring & Command-line Utilities

131

MON$STATEMENT_TIMEOUT Connection level statement timeout

MON$STATEMENT_TIMER Timeout timer expiration time

In MON$RECORD_STATS:

MON$RECORD_IMGC Number of records processed by the intermediate garbage collection

nbackup

UUID-based Backup and In-Place Merge

Roman Simakov; Vlad Khorsun

Tracker ticket CORE-2216

The nBackup utility in Firebird 4 can perform a physical backup that uses the GUID (UUID) of the
most recent backup of a read-only standby database to establish the backup target file. Increments
from the source database can be applied continuously to the standby database, eliminating the need
to keep and apply all increments since the last full backup.

The new style of “warm” backup and merge to a standby database can be run without affecting an
existing multilevel backup scheme on the live database.

Making Backups

The syntax pattern for this form of backup with nBackup is as follows:

nbackup -B[ACKUP] <level> | <GUID> <source database> [<backup file>]

Merging-in-Place from the Backup

The syntax pattern for an in-place “restore” to merge the incremental backup file with the standby
database is:

nbackup -I[NPLACE] -R[ESTORE] <standby database> <backup file>

“Restore” here means merging the increment from the backup file with the
standby database.

Switch names may change before the final release.

Example of an On-line Backup and Restore

a. Use gstat to get the UUID of the standby database:

Chapter 12. Monitoring & Command-line Utilities

132

http://tracker.firebirdsql.org/browse/CORE-2216

gstat -h <standby database>
...
 Variable header data:
 Database backup GUID: {8C519E3A-FC64-4414-72A8-1B456C91D82C}

b. Use the backup UUID to produce an incremental backup:

nbackup -B {8C519E3A-FC64-4414-72A8-1B456C91D82C} <source database> <backup file>

c. Apply increment to the standby database:

nbackup -I -R <standby database> <backup file>

Restore and Fixup for Replica Database

New (optional) command-line option -sequence (can be abbreviated to -seq) has been added for
-restore and -fixup commands. It preserves the existing GUID and replication sequence of the
original database (they are reset otherwise). This option should be used when creating a replica
using nbackup tool, so that the asynchronous replication can automatically be continued from the
point when a physical backup was performed on the primary side.

The syntax pattern is:

nbackup -R[ESTORE] <database file> <backup file> -SEQ[UENCE]
nbackup -F[IXUP] <database file> -SEQ[UENCE]

isql

Support for Statement Timeouts

A new command has been introduced in isql to enable an execution timeout in milliseconds to be
set for the next statement. The syntax is:

SET LOCAL_TIMEOUT <int>

After statement execution, the timer is automatically reset to zero.

Better transaction control

A new command has been introduced in isql to remember and reuse the last entered transaction
parameters. The syntax is:

Chapter 12. Monitoring & Command-line Utilities

133

SET KEEP_TRAN_PARAMS [{ ON | OFF}]

When set to ON, isql keeps the complete SQL text of the following successful SET TRANSACTION
statement and new transactions are started using the same SQL text (instead of the default
CONCURRENCY WAIT mode). When set to OFF, isql starts new transactions as usual. Name KEEP_TRAN can
be used as a shorthand for KEEP_TRAN_PARAMS.

Examples

-- check current value
SQL> SET;
...
Keep transaction params: OFF

-- toggle value
SQL> SET KEEP_TRAN;
SQL> SET;
...
Keep transaction params: ON
SET TRANSACTION

SQL>commit;

-- start new transaction, check KEEP_TRAN value and actual transaction's parameters
SQL>SET TRANSACTION READ COMMITTED WAIT;
SQL>SET;
...
Keep transaction params: ON
 SET TRANSACTION READ COMMITTED WAIT
SQL> SELECT RDB$GET_CONTEXT('SYSTEM', 'ISOLATION_LEVEL') FROM RDB$DATABASE;

RDB$GET_CONTEXT

===
READ COMMITTED

SQL> commit;

-- start new transaction, ensure is have parameters as KEEP_TRAN value
SQL> SELECT RDB$GET_CONTEXT('SYSTEM', 'ISOLATION_LEVEL') FROM RDB$DATABASE;

RDB$GET_CONTEXT

===
READ COMMITTED

-- disable KEEP_TRAN, current transaction is not changed
SQL> SET KEEP_TRAN OFF;
SQL> SELECT RDB$GET_CONTEXT('SYSTEM', 'ISOLATION_LEVEL') FROM RDB$DATABASE;

Chapter 12. Monitoring & Command-line Utilities

134

RDB$GET_CONTEXT

===
READ COMMITTED

SQL> commit;

-- start new transaction, ensure is has default parameters (SNAPSHOT)
SQL> SELECT RDB$GET_CONTEXT('SYSTEM', 'ISOLATION_LEVEL') FROM RDB$DATABASE;

RDB$GET_CONTEXT

===
SNAPSHOT

SQL> SET;
...
Keep transaction params: OFF

gbak

Backup and Restore with Encryption

Alex Peshkov

Tracker ticket CORE-5808

With an encrypted database, sooner or later it will need to be backed up and restored. It is not
unreasonable to want the database backup to be encrypted as well. If the encryption key is
delivered to the plug-in by some means that does not require input from the client application, it is
not a big problem. However, if the server expects the key to be delivered from the client side, that
could become a problem.

The introduction of keys to gbak in Firebird 4 provides a solution.

Prerequisites

A keyholder plug-in is required. This plug-in is able to load keys from some external source, such as
a configuration file, and deliver them using the call

ICryptKeyCallback* IKeyHolderPlugin::chainHandle(IStatus* status)

That key holder and the dbcrypt plug-ins that work with it should be installed on the workstation
that will be used to perform backups.

New Switches for Encrypted Backups & Restores

With the prerequisites in place, the following new switches are available for use. They are case-

Chapter 12. Monitoring & Command-line Utilities

135

http://tracker.firebirdsql.org/browse/CORE-5808

insensitive.

Table 2. Switches for Encrypted Backups/Restores

Switch What it Does

-KEYHOLDER This is the main switch necessary for gbak to access an encrypted
database.

-KEYNAME Available to name the key explicitly, in place of the default key specified
in the original database (when backing up) or in the backup file (when
restoring).

-CRYPT Available to name the plug-in to use to encrypt the backup file or restored
database in place of the default plug-in. It can also be used in
combination with the -KEYNAME switch to encrypt the backup of a non-
encrypted database or to encrypt a database restored from a non-
encrypted backup. See example below.

-ZIP Only for a backup, to compress the backup file before encrypting it. The
switch is necessary because the usual approach of compressing the
backup file with some favoured compression routine after gbak, perhaps
using pipe, does not work with encrypted backups because they are not
compressible. The -ZIP switch is unnecessary for a restore because the
format is detected automatically.

Usage and Examples

To back up an encrypted database do something like this:

gbak -b -keyholder MyKeyHolderPlugin host:dbname backup_file_name

The backup file will be encrypted using the same crypt plug-in and key that are used for database
encryption. This ensures that it will not be any easier to steal data from your backup file than from
the database.

To restore a database that was previously backed up encrypted:

gbak -c -keyholder MyKeyHolderPlugin backup_file_name host:dbname

The restored database will be encrypted using the same plug-in and key as the backup file. Using
the backup example above, of course this means the same plug-in and key as the original database.

The database is first encrypted right after creation and only after the encryption
data are restored into the header. This is a bit faster than a “restore-then-encrypt”
approach but, mainly, it is to avoid having non-encrypted data on the server
during the restore process.

The next example will either:

Chapter 12. Monitoring & Command-line Utilities

136

• restore the database from a backup file made using non-default Crypt and Keyholder plug-ins,
using the same key name as was used for the backup; OR

• restore a non-encrypted backup as an encrypted database

gbak -c -keyholder MyKeyHolderPlugin -crypt MyDbCryptPlugin
 -keyname SomeKey non_encrypted_backup_file host:dbname

The restored database will encrypted by MyDbCryptPlugin using SomeKey.

To make an encrypted backup of a non-encrypted database:

gbak -b -keyholder MyKeyHolderPlugin -crypt MyDbCryptPlugin
 -keyname SomeKey host:dbname encrypted_backup_file

Take note:

Attempts to create a non-encrypted backup of an encrypted database or to restore
an encrypted backup to a non-encrypted database will fail. Such operations are
intentionally disallowed to avoid foolish operator errors that would expose critical
data in non-encrypted form.

To create a compressed, encrypted backup:

gbak -b -keyholder MyKeyHolderPlugin -zip host:dbname backup_file_name

The backup file will be compressed before being encrypted using the same crypt plug-in and same
key that are used for the database encryption. ZLib is used to compress the backup file content and
the appropriate record is added to its header.

Compressing Non-Encrypted Databases

The -ZIP switch is also available for compressing a non-encrypted database. It is
important to understand that the format of a backup file thus created is not the
same as one created by compressing a backup file with a utility such as 7Zip. It can
be decompressed only by a gbak restore.

Enhanced Restore Performance

Alex Peshkov

Tracker ticket CORE-5952

The new Batch API is used to enhance the performance of restoring from backup.

Friendlier “-fix_fss_*” Messages

Alex Peshkov

Chapter 12. Monitoring & Command-line Utilities

137

http://tracker.firebirdsql.org/browse/CORE-5952

Tracker ticket CORE-5741

The messages in the verbose output from a restore using the “-fix_fss_*” switches now use the word
“adjusting” instead of “fixing”.

The same change was backported to version 3.0.5.

Ability to Backup/Restore Only Specified Tables

Dimitry Sibiryakov

Tracker ticket CORE-5538

A new command-line switch has been added to gbak: -INCLUDE(_DATA). Similarly to the existing
-SKIP(_DATA) switch, it accepts one parameter which is a regular expression pattern used to match
table names. If specified, it defines tables to be backed up or restored. The regular expression
syntax used to match table names is the same as in SIMILAR TO Boolean expressions. Interaction
between both switches is described in the following table.

Table 3. Interaction between -INCLUDE(_DATA) and -SKIP(_DATA) switches

 INCLUDE_DATA

SKIP_DATA NOT SET MATCHED NOT MATCHED

NOT SET included included excluded

MATCHED excluded excluded excluded

NOT MATCHED included included excluded

gfix

Configuring and managing replication

The gfix repertoire now includes the new -replica switch for configuring and managing Firebird
replication. For more detail, see the topic Creating a Replica Database.

It takes one of three arguments (case-insensitive):

read_only

Sets the database copy as a read-only replica, usually for a high-availability solution.

read_write

Sets the database copy as a read-write replica, e.g. for merging external changes into a database.

none

Converts the replica to a regular database, “switching off” replication to a read-write replica
when conditions call for replication flow to be discontinued for some reason. Typically, it would
be used to promote the replica to become the master database after a failure; or to make
physical backup copies from the replica.

Chapter 12. Monitoring & Command-line Utilities

138

http://tracker.firebirdsql.org/browse/CORE-5741
http://tracker.firebirdsql.org/browse/CORE-5538

Chapter 13. Compatibility Issues
In this section are features and modifications that might affect the way you have installed and used
Firebird in earlier releases.

SQL
Changes that may affect existing SQL code:

Deprecation of Legacy SQL Dialect 1

Starting with Firebird 4, Dialect 1 is declared deprecated. Its support will be removed in future
Firebird versions, with Dialect 3 becoming the only dialect supported. Please consider migrating to
Dialect 3 as soon as possible.

Read Consistency for READ COMMITTED transactions Used By Default

Firebird 4 not only introduces Read Consistency for Statements in Read-Committed Transactions,
but also makes it a default mode for all READ COMMITTED transactions, regardless of their
RECORD VERSION or NO RECORD VERSION properties. This is done to provide users with better
behaviour — both compliant with the SQL specification and less conflict-prone. However, this new
behaviour may also have unexpected side effects, please read the aforementioned chapter
carefully. If specifics of the READ CONSISTENCY mode are undesirable for some reasons, the
configuration setting ReadConsistency may be changed to allow the legacy behaviour. See more
details about the ReadConsistency setting in the Configuration Additions and Changes chapter.

Deprecation of External Functions (UDFs)

Support for the external function (UDF) feature is deprecated in Firebird 4. Its immediate effect, out
of the box, is that UDFs cannot be used with the default configuration, where the parameter
UdfAccess in firebird.conf is set to None) and the UDF libraries ib_udf and fbudf are withdrawn from
the distribution.

Most of the functions in those libraries were already deprecated in previous Firebird versions and
replaced with built-in analogues. Safe replacements for a few of the remaining functions are now
available, either in a new library of user-defined routines (UDRs) named
[lib]udf_compat.[dll/so/dylib], or as scripted conversions to PSQL stored functions. They are listed
below; those marked with asterisks (*) are the UDR conversions.

ADDDAY() *DOW() ROUND()

ADDDAY2() DPOWER() RTRIM()

ADDHOUR() GETEXACTTIMESTAMP *SDOW()

ADDMILLISECOND() *GETEXACTTIMESTAMPUTC SNULLIF()

ADDMINUTE() I64NULLIF() SNVL()

ADDMONTH() I64NVL() SRIGHT()

ADDSECOND() I64ROUND() STRING2BLOB()

Chapter 13. Compatibility Issues

139

ADDWEEK() I64TRUNCATE() STRLEN()

ADDYEAR() INULLIF() SUBSTR()

*DIV() INVL() SUBSTRLEN()

DNULLIF() ISLEAPYEAR() TRUNCATE()

DNVL() LTRIM(*UDF_FRAC() or *FRAC()

The Firebird 4 distribution contains a script to migrate all (or any) of those UDF declarations. You
can edit and extract from it to suit, if you wish, but you must keep the respective re-declarations
and conversions intact as scripted.

The UDF Migration Script

The SQL script that you can use to upgrade the declarations for the UDFs listed above to the
analogue UDRs or stored functions is located beneath the Firebird root, in
misc/upgrade/v4.0/udf_replace.sql.

How to Work with the Script

During the restore of your Firebird 3 backup, gbak will issue warnings about any UDFs that are
affected, but the restore will proceed. It would be useful to output the -verbose reporting to a file if
you want a list of the affected function declarations. You will note items like

gbak: WARNING:function UDF_FRAC is not defined
gbak: WARNING: module name or entrypoint could not be found

It means you have a UDF that is declared in the database but whose library is missing — which, of
course, we know is true.

Running the Script

From the command shell:

isql -user sysdba -pas masterkey -i udf_replace.sql {your-database}

REMINDER

This script will have no effect on declarations for UDFs from third-party libraries!

What If You MUST Use a UDF?

In the short term, if you absolutely cannot avoid retaining the use of a UDF, you must configure the
UdfAccess parameter to Restrict <path-list>. The default <path-list> points to the UDF sub-
directory beneath the Firebird root. The (uncommented!) line in firebird.conf should be:

UdfAccess = Restrict UDF

Chapter 13. Compatibility Issues

140

The libraries [lib]ib_udf.[dll/so/dylib] and [lib]fbudf.[dll/so/dylib] that were distributed with
Firebird 3 were tested to work with Firebird 4. No tests were done for any third-party or custom
UDF libraries but, considering that nothing changed in the way Firebird works with UDFs, other
than the default value for UdfAccess, they should also work.

The recommended long-term solution for any UDFs which you absolutely must use
is to replace them with UDRs or stored functions.

Changes in DDL and DML Due to Timezone Support

Timezone support introduces some changes in DDL and DML which could affect compatibility with
existing databases and applications.

Changes to Data Types TIMESTAMP and TIME

The syntax for declaring the data types TIMESTAMP and TIME has been extended to include arguments
defining whether the column, domain, parameter or variable should be defined with or without
time zone adjustments, i.e.:

TIME [{ WITHOUT | WITH } TIME ZONE]

TIMESTAMP [{ WITHOUT | WITH } TIME ZONE]

The default in both cases is WITHOUT TIME ZONE. If you are shifting migrated databases and/or
applications to use the zoned date/time features, it is advisable to run reality checks on any
calculations, computed fields, domains, query sets ordered or grouped by dates or timestamps, etc.

For more details, see Data Type Extensions for Time Zone Support in the DDL chapter.

CURRENT_TIME and CURRENT_TIMESTAMP

In version 4.0, CURRENT_TIME and CURRENT_TIMESTAMP are changed: they now return TIME WITH TIME
ZONE and TIMESTAMP WITH TIME ZONE, with the time zone set by the session time zone. In previous
versions, CURRENT_TIME and CURRENT_TIMESTAMP returned the respective types according to the system
clock, i.e. without any time zone.

The expressions LOCALTIMESTAMP and LOCALTIME now replace the former functionality of
CURRENT_TIMESTAMP and CURRENT_TIME, respectively.

Firebird 3.0.4 LOCALTIME and LOCALTIMESTAMP

To ease the transition, LOCALTIME and LOCALTIMESTAMP were added to versions 3.0.4
and 2.5.9, allowing developers to adjust application and PSQL code without any
functional changes, before migrating to Firebird 4.

Prefixed Implicit Date/Time Literals Now Rejected

The literal date/time syntax (DATE, TIME or TIMESTAMP prefixing the quoted value) used together with
the implicit date/time literal expressions ('NOW', 'TODAY', etc.) was known to evaluate those

Chapter 13. Compatibility Issues

141

expressions in ways that would produce unexpected results, often undetected:

• In stored procedures and functions, evaluation would occur at compile time but not during the
procedure or function call, storing the result in BLR and retrieving that stale value at runtime

• In DSQL, this style of usage in DSQL causes the evaluation to occur at prepare time, not at each
iteration of the statement as would be expected with correct usage of the implicit date/time
literals. The time difference between statement preparation and execution may be too small to
discover the issue, particularly with 'NOW', which is a timestamp. Users could have been misled
thinking the expression was evaluated at each iteration of the statement at runtime, when in
fact it happened at prepare time.

If something like TIMESTAMP 'NOW' has been used in DSQL queries in application code or in migrated
PSQL, there will be a compatibility issue with Firebird 4.

The behaviour was considered undesirable — the Firebird 4.0 engine and above will now reject
such expressions in both PSQL and DSQL.

Example of such usage that will now be rejected:

..
DECLARE VARIABLE moment TIMESTAMP;
 ..
 SELECT TIMESTAMP 'NOW' FROM RDB$DATABASE INTO :moment;
/* here, the variable :moment will 'frozen' as the timestamp at the moment
 the procedure or function was last compiled */
 ..

TIMESTAMP '<constant>' is for explict date/time literals, e.g. DATE '2019-02-20' is legal. The implicit
date/time literals, such as 'NOW' or 'YESTERDAY' are for use in expressions. Enforcement of the
appropriate usage means that attempting to combine both becomes explicitly invalid syntax.

Existing code where usage does not break the rule remains unaffected. Both 'NOW' and CAST('NOW'
AS TIMESTAMP) continue to work as before, as well as code that correctly uses the date/time prefixes
with explicit literals, like DATE '2019-02-20'.

Starting Value of Sequences

Before Firebird 4.0 a sequence was created with its current value set to its starting value (or zero by
default). So a sequence with starting value = 0 and increment = 1 starts at 1. While such a sequence
has the same result in Firebird 4.0 (i.e. also starts at 1), the underlying implementation is different,
thus making other cases different.

Now a sequence is created (or restarted) with its current value set to its starting value minus its
increment. And the default starting value is changed to 1. Then a sequence with starting value = 100
and increment = 10 has its first NEXT VALUE equal to 100 now, while it was 110 before. Likewise,
this sequence has its first GEN_ID(SEQ, 1) equal to 91 now, while it was 101 before.

Chapter 13. Compatibility Issues

142

INSERT … RETURNING Now Requires a SELECT privilege

If some INSERT statement contains a RETURNING clause that refers columns of the underlying table,
the appropriate SELECT privilege must be granted to the caller.

Utilities

Deprecation of QLI

Starting with Firebird 4, command-line utility QLI is declared deprecated. It will be removed in
future Firebird versions.

Chapter 13. Compatibility Issues

143

Chapter 14. Bugs Fixed

Firebird 4.0 Release: Bug Fixes
The following bug-fixes since the Release Candidate 1 are noted:

Core Engine

(#6816) — Illegal output length in BASE64/HEX ENCODE/DECODE functions.

fixed by A. Peshkov

(#6812) — BASE64_ENCODE and HEX_ENCODE can exceed the maximum length for VARCHAR.

fixed by A. Peshkov

(#6805) — RDB$TYPES has incorrect entries for RDB$TYPE 28 and 29 in RDB$TYPE_NAME column.

fixed by A. Peshkov

(#6804) — Assertion in tomcrypt when the key length for RC4 is too small.

fixed by A. Peshkov

(#6800) — Client config setting DefaultTimeZone is not passed to server when
isc_dpb_session_time_zone is not set.

fixed by A. dos Santos Fernandes

(#6797) — Functions DECRYPT and RSA_DECRYPT return VARCHAR CHARACTER SET NONE instead of
VARBINARY (VARCHAR CHARACTER SET OCTETS).

fixed by A. Peshkov

(#6795) — Replication gets stuck due to "Blob xxx.xx is not found for table xxx" error.

fixed by D. Yemanov

(#6790) — MON$ATTACHMENTS.MON$TIMESTAMP is incorrect when DefaultTimeZone is configured with time

Chapter 14. Bugs Fixed

144

https://github.com/FirebirdSQL/firebird/issues/6816
https://github.com/FirebirdSQL/firebird/issues/6812
https://github.com/FirebirdSQL/firebird/issues/6805
https://github.com/FirebirdSQL/firebird/issues/6804
https://github.com/FirebirdSQL/firebird/issues/6800
https://github.com/FirebirdSQL/firebird/issues/6797
https://github.com/FirebirdSQL/firebird/issues/6795
https://github.com/FirebirdSQL/firebird/issues/6790

zone different from the server’s default.

fixed by A. dos Santos Fernandes

(#6787) — MON$ATTACHMENTS.MON$TIMESTAMP should use its session original time zone.

fixed by A. dos Santos Fernandes

(#6785) — Problem when restoring the database on Firebird 4 RC1.

fixed by V. Khorsun

(#6782) — Cannot get "records fetched" for selectable procedures in trace.

fixed by V. Khorsun

(#6778) — Inconsistent cursor-driven deletion.

fixed by D. Yemanov

(#6768) — Cannot restore backup on a raw device (error during "open O_CREAT" operation for file
"/dev/sda1").

fixed by A. Peshkov

(#6761) — Hash join cannot match records using some TIME ZONE / DECFLOAT keys.

fixed by D. Yemanov

(#6759) — Results of concatenation with blob has no info about collation of source columns (which
are declared with such info).

fixed by V. Khorsun

(#6758) — COMPUTED BY column looses charset and collate of source field <F> when <F> is either of
type BLOB or VARCHAR casted to BLOB.

fixed by V. Khorsun

Chapter 14. Bugs Fixed

145

https://github.com/FirebirdSQL/firebird/issues/6787
https://github.com/FirebirdSQL/firebird/issues/6785
https://github.com/FirebirdSQL/firebird/issues/6782
https://github.com/FirebirdSQL/firebird/issues/6778
https://github.com/FirebirdSQL/firebird/issues/6768
https://github.com/FirebirdSQL/firebird/issues/6761
https://github.com/FirebirdSQL/firebird/issues/6759
https://github.com/FirebirdSQL/firebird/issues/6758

(#6756) — Error "no current record for fetch operation" when sorting by an international string.

fixed by D. Yemanov

(#6750) — CAST of Infinity values to FLOAT doesn’t work.

fixed by A. Peshkov

(#6749) — Error "Invalid time zone (+08). Falling back to displacement" in firebird.log.

fixed by A. dos Santos Fernandes

(#6747) — Wrong message when connecting to tiny trash database file.

fixed by A. Peshkov

(#6746) — Regression: CREATE DATABASE fails with 'Token unknown' error when DB name is
enclosed in double quotes and 'DEFAULT CHARACTER SET' is specified after DB name.

fixed by A. dos Santos Fernandes

(#6734) — Provide same results for date arithmetics when date is changed by values near +/-
max(bigint).

fixed by A. Peshkov

(#6733) — Attempt to create database with page_size >= 65536 makes DB with actual page size = 4KB
or 8KB, but not 32KB as it should.

fixed by A. Peshkov

(#6727) — Synchronous replication to localhost hangs on disconnect.

fixed by D. Yemanov

(#6724) — Inconsistent translation "string→timestamp→string→timestamp" in Dialect 1.

fixed by A. dos Santos Fernandes

Chapter 14. Bugs Fixed

146

https://github.com/FirebirdSQL/firebird/issues/6756
https://github.com/FirebirdSQL/firebird/issues/6750
https://github.com/FirebirdSQL/firebird/issues/6749
https://github.com/FirebirdSQL/firebird/issues/6747
https://github.com/FirebirdSQL/firebird/issues/6746
https://github.com/FirebirdSQL/firebird/issues/6734
https://github.com/FirebirdSQL/firebird/issues/6733
https://github.com/FirebirdSQL/firebird/issues/6727
https://github.com/FirebirdSQL/firebird/issues/6724

(#6719) — User without ALTER ANY ROLE privilege can use COMMENT ON ROLE.

fixed by A. Peshkov

(#6717) — FETCH ABSOLUTE and RELATIVE beyond bounds of cursor should always position
immediately before-first or after-last.

fixed by D. Yemanov

(#6716) — FETCH RELATIVE has an off by one error for the first row.

fixed by D. Yemanov

(#6710) — COMMENT ON USER can only apply comment on user defined by the default user manager
plugin.

fixed by A. Peshkov

(#6700) — Wire compression causes sporadic "Error reading data from the connection" errors.

fixed by A. Peshkov

(#6698) — Comments before the first line of code are removed.

fixed by A. dos Santos Fernandes

(#3810) — Wrong or missing IS NULL optimization.

fixed by V. Khorsun

(#3106) — Many indexed reads in a compound index with NULLs.

fixed by V. Khorsun

(#2469) — Stored procedure recursively called by calculated field fails after reconnect.

fixed by V. Khorsun

Chapter 14. Bugs Fixed

147

https://github.com/FirebirdSQL/firebird/issues/6719
https://github.com/FirebirdSQL/firebird/issues/6717
https://github.com/FirebirdSQL/firebird/issues/6716
https://github.com/FirebirdSQL/firebird/issues/6710
https://github.com/FirebirdSQL/firebird/issues/6700
https://github.com/FirebirdSQL/firebird/issues/6698
https://github.com/FirebirdSQL/firebird/issues/3810
https://github.com/FirebirdSQL/firebird/issues/3106
https://github.com/FirebirdSQL/firebird/issues/2469

Server Crashes/Hang-ups

(#6808) — Segfault in ENCRYPT/DECRYPT functions when their first argument is NULL.

fixed by A. Peshkov

(#6781) — Crashing (due to UDF exception) process hangs.

fixed by V. Khorsun

(#6777) — AV when the engine shuts down and cancels an attachment waiting in the lock manager.

fixed by V. Khorsun

(#6766) — Replication plugin can crash the engine by returning nullptr from startTransaction()
method.

fixed by D. Yemanov

(#6754) — Connect to database that contains broken pages can lead to a server crash.

fixed by A. Peshkov

(#6753) — AV in the engine when StatementTimeout is active for user statement and some internal
DSQL statement was executed as part of overall execution process.

fixed by V. Khorsun

(#6752) — Segfaults in fbclient when receiving invalid / unexpected data from the server.

fixed by A. Peshkov

(#6751) — Various segfaults in fbclient.

fixed by A. Peshkov

(#6738) — Segfault when GFIX requests for database page buffer more memory than available from
OS.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

148

https://github.com/FirebirdSQL/firebird/issues/6808
https://github.com/FirebirdSQL/firebird/issues/6781
https://github.com/FirebirdSQL/firebird/issues/6777
https://github.com/FirebirdSQL/firebird/issues/6766
https://github.com/FirebirdSQL/firebird/issues/6754
https://github.com/FirebirdSQL/firebird/issues/6753
https://github.com/FirebirdSQL/firebird/issues/6752
https://github.com/FirebirdSQL/firebird/issues/6751
https://github.com/FirebirdSQL/firebird/issues/6738

(#6731) — Segfault when shutting down database which got encrypted by another process.

fixed by A. Peshkov

(#6708) — Rare race condition in Plugin Manager could lead to the server crash.

fixed by V. Khorsun

(#6265) — Segfault when using expression index with complex expression.

fixed by V. Khorsun

(#5784) — When 32-bit and 64-bit Firebird 3 servers run on a single Windows machine
concurrently, Firebird services freeze several minutes after first disconnect.

fixed by V. Khorsun

API/Remote Interface

(#6718) — Event delivery could be missed when local (XNET) protocol is used.

fixed by V. Khorsun

(#6679) — CLOOP envelopes are wrong regarding IStatus.

fixed by A. Peshkov

Build Issues

(#6780) — firebird.msg is missing in Firebird Android builds.

fixed by A. Peshkov

(#6745) — Protect included tomcrypt library from being overwritten by a system package.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

149

https://github.com/FirebirdSQL/firebird/issues/6731
https://github.com/FirebirdSQL/firebird/issues/6708
https://github.com/FirebirdSQL/firebird/issues/6265
https://github.com/FirebirdSQL/firebird/issues/5784
https://github.com/FirebirdSQL/firebird/issues/6718
https://github.com/FirebirdSQL/firebird/issues/6679
https://github.com/FirebirdSQL/firebird/issues/6780
https://github.com/FirebirdSQL/firebird/issues/6745

Utilities

isql

(#6796) — Buffer overflow when padding line with national characters causes ISQL to crash.

fixed by A. dos Santos Fernandes

gbak

(#6709) — GBAK discards replica mode during backup/restore.

fixed by D. Yemanov

gstat

(#6729) — Regression: GSTAT with switch -t executed via services fails with "found unknown switch"
error.

fixed by A. Peshkov

Firebird 4.0 Release Candidate 1: Bug Fixes
The following bug-fixes since the Beta 2 release are noted:

Core Engine

(CORE-6475) — Memory leak when running EXECUTE STATEMENT with named parameters.

fixed by V. Khorsun

(CORE-6472) — Wrong byte order for UUIDs reported by GSTAT and monitoring tables.

fixed by D. Sibiryakov

(CORE-6460) — Incorrect query result when using named window.

fixed by V. Khorsun

(CORE-6453) — EXECUTE STATEMENT fails on FB 4.x if containing time/timestamp with time zone
parameters.

Chapter 14. Bugs Fixed

150

https://github.com/FirebirdSQL/firebird/issues/6796
https://github.com/FirebirdSQL/firebird/issues/6709
https://github.com/FirebirdSQL/firebird/issues/6729
http://tracker.firebirdsql.org/browse/CORE-6475
http://tracker.firebirdsql.org/browse/CORE-6472
http://tracker.firebirdsql.org/browse/CORE-6460
http://tracker.firebirdsql.org/browse/CORE-6453

fixed by A. dos Santos Fernandes

(CORE-6447) — Unexpectedly different text of message for parameterized expression starting from
second run. Same fix was backported to Firebird 3.0.8.

fixed by V. Khorsun

(CORE-6441) — Srp plugin keeps connection after database has been removed for ~10 seconds.
Same fix was backported to Firebird 3.0.8.

fixed by A. Peshkov

(CORE-6440) — Expression indexes containing COALESCE inside cannot be matched by the optimizer
after migration from v2.5 to v3.0. Same fix was backported to Firebird 3.0.8.

fixed by D. Yemanov

(CORE-6437) — GFIX cannot set big value for page buffers. Same fix was backported to Firebird
3.0.8.

fixed by V. Khorsun

(CORE-6427) — Whitespace as date separator causes conversion error.

fixed by A. dos Santos Fernandes

(CORE-6421) — Parameter in offset expression in LAG, LEAD, NTH_VALUE window functions requires
explicit cast to BIGINT or INTEGER.

fixed by A. dos Santos Fernandes

(CORE-6419) — Truncation of strings to put in MON$ tables do not work correctly.

fixed by A. dos Santos Fernandes

(CORE-6415) — Error "malformed string' is raised instead of "expected: N, actual: M" when UTF-8
charset is used and default value is longer than the column length.

fixed by A. dos Santos Fernandes

Chapter 14. Bugs Fixed

151

http://tracker.firebirdsql.org/browse/CORE-6447
http://tracker.firebirdsql.org/browse/CORE-6441
http://tracker.firebirdsql.org/browse/CORE-6440
http://tracker.firebirdsql.org/browse/CORE-6437
http://tracker.firebirdsql.org/browse/CORE-6427
http://tracker.firebirdsql.org/browse/CORE-6421
http://tracker.firebirdsql.org/browse/CORE-6419
http://tracker.firebirdsql.org/browse/CORE-6415

(CORE-6414) — Error "expected length N, actual M" contains wrong value of M when UTF-8 charset
is used in the field declaration.

fixed by A. dos Santos Fernandes

(CORE-6408) — RETURNING clause in the MERGE statement cannot reference column in aliased target
table using qualified reference (alias.column) if DELETE action present. Same fix was backported to
Firebird 3.0.8.

fixed by A. dos Santos Fernandes

(CORE-6403) — Some PSQL statements may lead to exceptions report wrong line/column.

fixed by A. dos Santos Fernandes

(CORE-6398) — Error converting string with hex representation of INTEGER to SMALLINT.

fixed by A. Peshkov

(CORE-6397) — Message length error with COALESCE and TIME / TIMESTAMP WITHOUT TIME ZONE and
WITH TIME ZONE.

fixed by A. dos Santos Fernandes

(CORE-6389) — Using binary string literal to assign to user-defined blob sub-types yield conversion
error.

fixed by A. dos Santos Fernandes

(CORE-6386) — ALTER SEQUENCE RESTART WITH <n> should not change the initial sequence START value.

fixed by A. dos Santos Fernandes

(CORE-6385) — Wrong line and column information after IF statement.

fixed by A. dos Santos Fernandes

(CORE-6379) — Bugcheck 179 (decompression overran buffer).

Chapter 14. Bugs Fixed

152

http://tracker.firebirdsql.org/browse/CORE-6414
http://tracker.firebirdsql.org/browse/CORE-6408
http://tracker.firebirdsql.org/browse/CORE-6403
http://tracker.firebirdsql.org/browse/CORE-6398
http://tracker.firebirdsql.org/browse/CORE-6397
http://tracker.firebirdsql.org/browse/CORE-6389
http://tracker.firebirdsql.org/browse/CORE-6386
http://tracker.firebirdsql.org/browse/CORE-6385
http://tracker.firebirdsql.org/browse/CORE-6379

fixed by V. Khorsun

(CORE-6376) — IDENTITY column with explicit START WITH or INCREMENT BY starts with wrong value.

fixed by A. dos Santos Fernandes

(CORE-6357) — LEAD() and LAG() do not allow to specify 3rd argument of INT128 datatype.

fixed by A. Peshkov

(CORE-6356) — ROUND() does not allow second argument >=1 when its first argument is more than
MAX_BIGINT / 10.

fixed by A. Peshkov

(CORE-6355) — TRUNC() does not accept second argument = -128 (but shows it as required boundary
in error message).

fixed by A. Peshkov

(CORE-6353) — INT128 data type has problems with some PSQL objects.

fixed by A. Peshkov

(CORE-6344) — Invalid return type for functions with INT128 / NUMERIC(38) argument.

fixed by A. Peshkov

(CORE-6337) — Sub-type information is lost when calculating arithmetic expressions.

fixed by A. Peshkov

(CORE-6336) — Error "Implementation of text subtype <NNNN> not located" on attempt to use some
collations defined in fbintl.conf.

fixed by A. dos Santos Fernandes

(CORE-6335) — INSERT … RETURNING does not require a SELECT privilege.

Chapter 14. Bugs Fixed

153

http://tracker.firebirdsql.org/browse/CORE-6376
http://tracker.firebirdsql.org/browse/CORE-6357
http://tracker.firebirdsql.org/browse/CORE-6356
http://tracker.firebirdsql.org/browse/CORE-6355
http://tracker.firebirdsql.org/browse/CORE-6353
http://tracker.firebirdsql.org/browse/CORE-6344
http://tracker.firebirdsql.org/browse/CORE-6337
http://tracker.firebirdsql.org/browse/CORE-6336
http://tracker.firebirdsql.org/browse/CORE-6335

fixed by D. Yemanov

(CORE-6328) — FB4 Beta 2 may still be using the current date for TIME WITH TIME ZONE and extended
wire protocol.

fixed by A. dos Santos Fernandes

(CORE-6325) — NTILE/RANK/PERCENT_RANK may cause problems in big/complex statements.

fixed by A. dos Santos Fernandes

(CORE-6318) — CAST('NOW' as TIME) raises a conversion error.

fixed by A. dos Santos Fernandes

(CORE-6316) — Unable to specify new 32KB page size in CREATE DATABASE statement.

fixed by A. Peshkov

(CORE-6303) — Error writing to TIMESTAMP / TIME WITH TIME ZONE array.

fixed by A. Peshkov

(CORE-6302) — Error writing an array of NUMERIC(24,6) to the database.

fixed by A. Peshkov

(CORE-6084) — CREATE SEQUENCE START WITH has wrong initial value.

fixed by A. dos Santos Fernandes

(CORE-6023) — FB4 is unable to overwrite older ODS database.

fixed by A. Peshkov

(CORE-5838) — Rotated trace files are locked by the engine.

fixed by V. Khorsun

Chapter 14. Bugs Fixed

154

http://tracker.firebirdsql.org/browse/CORE-6328
http://tracker.firebirdsql.org/browse/CORE-6325
http://tracker.firebirdsql.org/browse/CORE-6318
http://tracker.firebirdsql.org/browse/CORE-6316
http://tracker.firebirdsql.org/browse/CORE-6303
http://tracker.firebirdsql.org/browse/CORE-6302
http://tracker.firebirdsql.org/browse/CORE-6084
http://tracker.firebirdsql.org/browse/CORE-6023
http://tracker.firebirdsql.org/browse/CORE-5838

(CORE-4985) — A non-privileged user could implicitly count records in a restricted table.

fixed by D. Yemanov

(CORE-2274) — MERGE has a non-standard behaviour, accepts multiple matches.

fixed by V. Khorsun

Server Crashes/Hang-ups

(CORE-6450) — Races in the security databases cache could lead to the server crash. Same fix was
backported to Firebird 3.0.8.

fixed by A. Peshkov

(CORE-6433) — Server could crash during a daily maintenance / set statistics index. Same fix was
backported to Firebird 3.0.8.

fixed by A. Peshkov

(CORE-6412) — Firebird was freezing when trying to manage users via triggers. Same fix was
backported to Firebird 3.0.8.

fixed by A. Peshkov

(CORE-6387) — Client process was aborting due to bugs inside the ChaCha plugin.

fixed by A. Peshkov

API/Remote Interface

(CORE-6432) — Possible buffer overflow in client library in Attachment::getInfo() call. Same fix was
backported to Firebird 3.0.8.

fixed by A. Peshkov

(CORE-6426) — Assertion when the batch is executed without a BLOB field.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

155

http://tracker.firebirdsql.org/browse/CORE-4985
http://tracker.firebirdsql.org/browse/CORE-2274
http://tracker.firebirdsql.org/browse/CORE-6450
http://tracker.firebirdsql.org/browse/CORE-6433
http://tracker.firebirdsql.org/browse/CORE-6412
http://tracker.firebirdsql.org/browse/CORE-6387
http://tracker.firebirdsql.org/browse/CORE-6432
http://tracker.firebirdsql.org/browse/CORE-6426

(CORE-6425) — Exception in client library in IAttachment::createBatch().

fixed by A. Peshkov

Build Issues

(CORE-6305) — Android port build failure.

fixed by A. Peshkov

Utilities

isql

(CORE-6438) — Bad headers when text columns has >= 80 characters.

fixed by A. dos Santos Fernandes

gbak

(CORE-6377) — Unable to restore database with tables using GENERATED ALWAYS AS IDENTITY columns.

fixed by A. Peshkov

Firebird 4.0 Beta 2 Release: Bug Fixes
The following bug-fixes since the Beta 1 release are noted:

Core Engine

(CORE-6290) — Hex number used at the end of statement could read invalid memory and produce
wrong values or exceptions. Same fix was backported to Firebird 3.0.6.

fixed by A. dos Santos Fernandes

(CORE-6282) — Data type of MON$ATTACHMENTS.MON$IDLE_TIMER and
MON$STATEMENTS.MON$STATEMENT_TIMER was defined as TIMESTAMP WITHOUT TIME ZONE, now it’s changed
to TIMESTAMP WITH TIME ZONE.

fixed by A. dos Santos Fernandes

Chapter 14. Bugs Fixed

156

http://tracker.firebirdsql.org/browse/CORE-6425
http://tracker.firebirdsql.org/browse/CORE-6305
http://tracker.firebirdsql.org/browse/CORE-6438
http://tracker.firebirdsql.org/browse/CORE-6377
http://tracker.firebirdsql.org/browse/CORE-6290
http://tracker.firebirdsql.org/browse/CORE-6282

(CORE-6281) — Invalid timestamp errors could happen when working with the
RDB$TIME_ZONE_UTIL.TRANSITIONS procedure.

fixed by A. dos Santos Fernandes

(CORE-6280) — MERGE statement could lose parameters in the “WHEN [NOT] MATCHED” clause that will
never be matched. This could also cause server crashes in some situations. Same fix was
backported to Firebird 3.0.6.

fixed by A. dos Santos Fernandes

(CORE-6272) — Failed attach to a database was not traced.

fixed by A. Peshkov

(CORE-6266) — Deleting records from MON$ATTACHMENTS using the ORDER BY clause didn’t close the
corresponding attachments. Same fix was backported to Firebird 3.0.6.

fixed by D. Yemanov

(CORE-6251) — UNIQUE CONSTRAINT violation could be possible. Same fix was backported to Firebird
3.0.6.

fixed by V. Khorsun

(CORE-6250) — Signature mismatch error could be raised when creating package body on identical
packaged procedure header. Same fix was backported to Firebird 3.0.6.

fixed by A. dos Santos Fernandes

(CORE-6248) — A number of errors could happen when database name is longer than 255
characters.

fixed by A. Peshkov

(CORE-6243) — v4 Beta 1 regression happened: the engine rejects POSITION element of the SQL:2003
CREATE TRIGGER syntax.

fixed by A. dos Santos Fernandes

Chapter 14. Bugs Fixed

157

http://tracker.firebirdsql.org/browse/CORE-6281
http://tracker.firebirdsql.org/browse/CORE-6280
http://tracker.firebirdsql.org/browse/CORE-6272
http://tracker.firebirdsql.org/browse/CORE-6266
http://tracker.firebirdsql.org/browse/CORE-6251
http://tracker.firebirdsql.org/browse/CORE-6250
http://tracker.firebirdsql.org/browse/CORE-6248
http://tracker.firebirdsql.org/browse/CORE-6243

(CORE-6241) — Values greater than number of days between 01.01.0001 and 31.12.9999 (=3652058)
could be added or subtracted from DATE.

fixed by A. dos Santos Fernandes

(CORE-6238) — DECFLOAT: subtraction (“Num1 - Num2”) would lead to the “Decimal float overflow”
error if Num2 is specified in scientific notation and is less than max double
(1.7976931348623157e308).

fixed by A. Peshkov

(CORE-6236) — RDB$TIME_ZONE_UTIL package had wrong privilege defined for PUBLIC.

fixed by A. dos Santos Fernandes, D. Yemanov

(CORE-6230) — It was impossible to connect to a database if security.db reference was removed
from databases.conf. Same fix was backported to Firebird 3.0.6.

fixed by A. Peshkov

(CORE-6221) — Incorrect implementation of allocFunc() for zlib1: memory leak was possible. Same
fix was backported to Firebird 3.0.6.

fixed by A. Peshkov

(CORE-6214) — tzdata database version was outdated and required an update.

fixed by A. dos Santos Fernandes

(CORE-6206) — VARCHAR of insufficient length was used for command SET BIND OF DECFLOAT TO
VARCHAR.

fixed by V. Khorsun

(CORE-6205) — Improper error was raised for UNION DISTINCT with more than 255 columns.

fixed by A. dos Santos Fernandes

(CORE-6186) — Original contents of the column used with ENCRYPT() looked as distorted after this

Chapter 14. Bugs Fixed

158

http://tracker.firebirdsql.org/browse/CORE-6241
http://tracker.firebirdsql.org/browse/CORE-6238
http://tracker.firebirdsql.org/browse/CORE-6236
http://tracker.firebirdsql.org/browse/CORE-6230
http://tracker.firebirdsql.org/browse/CORE-6221
http://tracker.firebirdsql.org/browse/CORE-6214
http://tracker.firebirdsql.org/browse/CORE-6206
http://tracker.firebirdsql.org/browse/CORE-6205
http://tracker.firebirdsql.org/browse/CORE-6186

call.

fixed by A. Peshkov

(CORE-6181) — Usage of “SET DECFLOAT BIND BIGINT,n” with result of 11+ digits, would fail with the
“Decimal float invalid operation” error.

fixed by A. Peshkov

(CORE-6166) — Some problems could appear for long object names (> 255 bytes).

fixed by A. dos Santos Fernandes

(CORE-6160) — SUBSTRING of non-text/-blob was described to return NONE character set in DSQL.

fixed by A. dos Santos Fernandes

(CORE-6159) — SUBSTRING SIMILAR was described with wrong data type in DSQL.

fixed by A. dos Santos Fernandes

(CORE-6110) — 64-bit transaction IDs were not stored properly inside the status vector.

fixed by I. Eremin

(CORE-6080) — Attempt to drop an existing user could randomly fail with error “336723990 : record
not found for user”.

fixed by V. Khorsun

(CORE-6046) — Incorrect time zone parsing could read garbage in memory.

fixed by A. dos Santos Fernandes

(CORE-6034) — The original time zone was not set to the current time zone at the routine
invocation.

fixed by A. dos Santos Fernandes

Chapter 14. Bugs Fixed

159

http://tracker.firebirdsql.org/browse/CORE-6181
http://tracker.firebirdsql.org/browse/CORE-6166
http://tracker.firebirdsql.org/browse/CORE-6160
http://tracker.firebirdsql.org/browse/CORE-6159
http://tracker.firebirdsql.org/browse/CORE-6110
http://tracker.firebirdsql.org/browse/CORE-6080
http://tracker.firebirdsql.org/browse/CORE-6046
http://tracker.firebirdsql.org/browse/CORE-6034

(CORE-6033) — SUBSTRING(CURRENT_TIMESTAMP …) would fail with a “string truncation” error.

fixed by A. dos Santos Fernandes

(CORE-5957) — Adding a numeric quantifier as a bound for repetition of expression inside SIMILAR
TO could lead to an empty resultset.

fixed by A. dos Santos Fernandes

(CORE-5931) — SIMILAR TO did not return the result when an invalid pattern was used.

fixed by A. dos Santos Fernandes

(CORE-5892) — SQL SECURITY DEFINER context was not properly evaluated for monitoring tables.

fixed by R. Simakov

(CORE-5697) — Conversion from numeric literals to DECFLOAT would add the precision that is not
originally present.

fixed by A. Peshkov

(CORE-5696) — Conversion from zero numeric literals to DECFLOAT would lead to the incorrect result.

fixed by A. Peshkov

(CORE-5664) — SIMILAR TO was substantially (500-700x) slower than LIKE on trivial pattern matches
with VARCHAR data.

fixed by A. dos Santos Fernandes

(CORE-4874) — Server could perform a SIMILAR TO matching infinitely.

fixed by A. dos Santos Fernandes

(CORE-4739) — Accent insensitive comparison: diacritical letters with diagonal crossing stroke
failed for non-equality conditions with their non-accented forms.

fixed by A. dos Santos Fernandes

Chapter 14. Bugs Fixed

160

http://tracker.firebirdsql.org/browse/CORE-6033
http://tracker.firebirdsql.org/browse/CORE-5957
http://tracker.firebirdsql.org/browse/CORE-5931
http://tracker.firebirdsql.org/browse/CORE-5892
http://tracker.firebirdsql.org/browse/CORE-5697
http://tracker.firebirdsql.org/browse/CORE-5696
http://tracker.firebirdsql.org/browse/CORE-5664
http://tracker.firebirdsql.org/browse/CORE-4874
http://tracker.firebirdsql.org/browse/CORE-4739

(CORE-3858) — Very poor performance of SIMILAR TO for some arguments.

fixed by A. dos Santos Fernandes

(CORE-3380) — It was possible to read from the newly created BLOB. It’s prohibited now.

fixed by A. dos Santos Fernandes

Server Crashes/Hang-ups

(CORE-6254) — Server could crash when using SET TRANSACTION and ON TRANSACTION START trigger
uses EXECUTE STATEMENT against current transaction. Same fix was backported to Firebird 3.0.6.

fixed by V. Khorsun

(CORE-6253) — Locked fb_lock file could cause a server crash. Same fix was backported to Firebird
3.0.6.

fixed by V. Khorsun

(CORE-6251) — Server would crash when built-in function LEFT or RIGHT is missing its 2nd argument.
Same fix was backported to Firebird 3.0.6.

fixed by A. dos Santos Fernandes

(CORE-6231) — Server would crash during shutdown of XNET connection to a local database when
events have been registered. Same fix was backported to Firebird 3.0.6.

fixed by V. Khorsun

(CORE-6224) — Server could crash due to double destruction of the rem_port object. Same fix was
backported to Firebird 3.0.6.

fixed by D. Kovalenko, A. Peshkov

(CORE-6218) — COUNT(DISTINCT DECFLOAT_FIELD) could cause the server to crash when there are
duplicate values in this field.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

161

http://tracker.firebirdsql.org/browse/CORE-3858
http://tracker.firebirdsql.org/browse/CORE-3380
http://tracker.firebirdsql.org/browse/CORE-6254
http://tracker.firebirdsql.org/browse/CORE-6253
http://tracker.firebirdsql.org/browse/CORE-6251
http://tracker.firebirdsql.org/browse/CORE-6231
http://tracker.firebirdsql.org/browse/CORE-6224
http://tracker.firebirdsql.org/browse/CORE-6218

(CORE-6217) — Dangerous (possibly leading to a crash) work with pointer: delete ptr; ptr=new ;.

fixed by D. Kovalenko, A. Peshkov

(CORE-5972) — External engine trigger would crash the server if the table has computed fields.
Same fix was backported to Firebird 3.0.6.

fixed by A. dos Santos Fernandes

(CORE-4893) — SIMILAR TO would cause a server crash when matching a blob with size >2GB to a
string literal.

fixed by A. dos Santos Fernandes

API/Remote Interface

(CORE-6283) — Result of isNullable() in message metadata, returned by metadata builder, did not
match datatype set by setType() in metadata builder. Same fix was backported to Firebird 3.0.6.

fixed by A. Peshkov

(CORE-6227) — isc_info_svc_user_dbpath was always returning an alias of the main security
database. Same fix was backported to Firebird 3.0.6.

fixed by A. Peshkov

(CORE-6212) — Authentication plugin on the server could read garbage data from the client instead
of the empty packet.

fixed by A. Peshkov

(CORE-6207) — It was impossible to compile Firebird.pas with FPC.

fixed by A. Peshkov

Build Issues

(CORE-6174) — ibase.h was missing from the nightly builds.

fixed by A. dos Santos Fernandes

Chapter 14. Bugs Fixed

162

http://tracker.firebirdsql.org/browse/CORE-6217
http://tracker.firebirdsql.org/browse/CORE-5972
http://tracker.firebirdsql.org/browse/CORE-4893
http://tracker.firebirdsql.org/browse/CORE-6283
http://tracker.firebirdsql.org/browse/CORE-6227
http://tracker.firebirdsql.org/browse/CORE-6212
http://tracker.firebirdsql.org/browse/CORE-6207
http://tracker.firebirdsql.org/browse/CORE-6174

(CORE-6170) — Installation on CentOS 8 failed because of the mismatched version of LibTomMath
and LibNCurses libraries.

fixed by A. Peshkov

(CORE-6061) — It was impossible to build the server with the --with-builtin-tommath option.

fixed by A. Peshkov

(CORE-6056) — Overflow warnings appeared when building some collations.

fixed by A. dos Santos Fernandes

(CORE-6019) — Wire compression did not work without the MSVC 2010 runtime package installed.

fixed by V. Khorsun

(CORE-5691) — File description of the Firebird executables was not specific.

fixed by V. Khorsun

(CORE-5445) — Installation failed on Debian Stretch/Testing due to incorrect version of the
LibTomMath library.

fixed by A. Peshkov

Utilities

isql

(CORE-6262) — SHOW DOMAIN/TABLE did not display the character set of system objects.

fixed by A. dos Santos Fernandes

(CORE-6260) — Warnings were not always displayed in ISQL. Same fix was backported to Firebird
3.0.6.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

163

http://tracker.firebirdsql.org/browse/CORE-6170
http://tracker.firebirdsql.org/browse/CORE-6061
http://tracker.firebirdsql.org/browse/CORE-6056
http://tracker.firebirdsql.org/browse/CORE-6019
http://tracker.firebirdsql.org/browse/CORE-5691
http://tracker.firebirdsql.org/browse/CORE-5445
http://tracker.firebirdsql.org/browse/CORE-6262
http://tracker.firebirdsql.org/browse/CORE-6260

(CORE-6211) — Command “isql -X” could not extract the ROLE name when using a multi-byte
charset for the connection.

fixed by A. dos Santos Fernandes

(CORE-6116) — Metadata script extracted with ISQL from a database restored from a v2.5 backup
was invalid if some table has COMPUTED BY fields. Same fix was backported to Firebird 3.0.6.

fixed by A. dos Santos Fernandes

(CORE-6044) — Some issues were noticed due to the increased SQL identifier length.

fixed by A. dos Santos Fernandes

gbak

(CORE-6265) — Existing mapping rules were removed by the backup/restore cycle. Same fix was
backported to Firebird 3.0.6.

fixed by A. Peshkov

(CORE-6233) — Wrong dependencies of stored function on view were created after backup/restore.
Same fix was backported to Firebird 3.0.6.

fixed by A. dos Santos Fernandes

(CORE-6208) — CREATE DATABASE permission would disappear from security database after the
backup/restore cycle. Same fix was backported to Firebird 3.0.6.

fixed by A. Peshkov

(CORE-6130) — Creating backup to STDOUT using the service manager was broken. Same fix was
backported to Firebird 3.0.6.

fixed by A. Peshkov

(CORE-6071) — Restoring an encrypted backup of a SQL dialect 1 database would fail.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

164

http://tracker.firebirdsql.org/browse/CORE-6211
http://tracker.firebirdsql.org/browse/CORE-6116
http://tracker.firebirdsql.org/browse/CORE-6044
http://tracker.firebirdsql.org/browse/CORE-6265
http://tracker.firebirdsql.org/browse/CORE-6233
http://tracker.firebirdsql.org/browse/CORE-6208
http://tracker.firebirdsql.org/browse/CORE-6130
http://tracker.firebirdsql.org/browse/CORE-6071

(CORE-5976) — GBAK multi-database file restore used wrong minimum number of pages for the
first database file.

fixed by M. Rotteveel

(CORE-2251) — GBAK doesn’t return the error code in some cases. Same fix was backported to
Firebird 3.0.6.

fixed by A. Peshkov

gfix

(CORE-5364) — gfix -online normal did not raise an error when there was another SYSDBA-owned
session open. Same fix was backported to Firebird 3.0.6.

fixed by A. Peshkov

Firebird 4.0 Beta 1 Release: Bug Fixes
The following bug-fixes since the Alpha release are noted:

Core Engine

(CORE-5986) — Evaluation of NULL IS [NOT] FALSE | TRUE was incorrect. Same fix was backported to
Firebird 3.0.5.

fixed by A. dos Santos Fernandes

(CORE-5985) — Regression: ROLE was not being passed to ES/EDS: specifying it in the statement was
ignored. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5982) — An error involving read permission for a BLOB field was being thrown when the
BLOB was an input or output parameter for a procedure. Same fix was backported to Firebird 3.0.5.

fixed by D. Starodubov

(CORE-5974) — SELECT DISTINCT with a decfloat/timezone/collated column was producing wrong
results.

Chapter 14. Bugs Fixed

165

http://tracker.firebirdsql.org/browse/CORE-5976
http://tracker.firebirdsql.org/browse/CORE-2251
http://tracker.firebirdsql.org/browse/CORE-5364
http://tracker.firebirdsql.org/browse/CORE-5986
http://tracker.firebirdsql.org/browse/CORE-5985
http://tracker.firebirdsql.org/browse/CORE-5982
http://tracker.firebirdsql.org/browse/CORE-5974

fixed by A. dos Santos Fernandes

(CORE-5973) — Improvement: Fixed-point overflow in a DOUBLE PRECISION value converted from
DECFLOAT is now handled properly.

fixed by A. Peshkov

(CORE-5965) — The optimizer was choosing a less efficient plan in FB4 and FB3 than the FB2.5
optimizer. Same fix was backported to Firebird 3.0.5.

fixed by D. Yemanov

(CORE-5959) — Firebird would return the wrong time after a change of time zone. Same fix was
backported to Firebird 3.0.5.

fixed by V. Khorsun

(CORE-5950) — Deadlock could occur when attaching to a bugchecked database. Same fix was
backported to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5949) — Bugcheck could happen when a read-only database with non-zero linger was set to
read-write mode. Same fix was backported to Firebird 3.0.5.

fixed by V. Khorsun

(CORE-5935) — Bugcheck 165 (cannot find TIP page). Same fix was backported to Firebird 3.0.5.

fixed by V. Khorsun

(CORE-5930) — Bugcheck with message “incorrect snapshot deallocation - too few slots”.

fixed by V. Khorsun

(CORE-5918) — Memory pool statistics were inaccurate. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

166

http://tracker.firebirdsql.org/browse/CORE-5973
http://tracker.firebirdsql.org/browse/CORE-5965
http://tracker.firebirdsql.org/browse/CORE-5959
http://tracker.firebirdsql.org/browse/CORE-5950
http://tracker.firebirdsql.org/browse/CORE-5949
http://tracker.firebirdsql.org/browse/CORE-5935
http://tracker.firebirdsql.org/browse/CORE-5930
http://tracker.firebirdsql.org/browse/CORE-5918

(CORE-5896) — A NOT NULL constraint was not being synchronized after the column was renamed.

fixed by A. dos Santos Fernandes

(CORE-5785) — An ORDER BY clause on a compound index could disable usage of other indices. Same
fix was backported to Firebird 3.0.5.

fixed by D. Yemanov

(CORE-5871) — Incorrect caching of the result of a subquery result in a procedure call from a SELECT
query.

fixed by A. dos Santos Fernandes

(CORE-5862) — RDB$CHARACTER_LENGTH in RDB$FIELDS was not being populated when the column was a
computed VARCHAR without an explicit type.

fixed by A. dos Santos Fernandes

(CORE-5750) — Date-time parsing needed strengthening.

fixed by A. dos Santos Fernandes

(CORE-5728) — The field subtype of DEC_FIXED columns was not returned by
isc_info_sql_sub_type.

fixed by A. Peshkov

(CORE-5726) — The error message when inserting a value exceeding the maximum value of
DEC_FIXED decimal was unclear.

fixed by A. Peshkov

(CORE-5717) — The literal date/time prefix syntax (DATE, TIME or TIMESTAMP prefix before the quoted
value) used together with the implicit date/time literal expressions ('NOW', 'TODAY', etc.) was known
to evaluate those expressions in ways that would produce unexpected results, often undetected.
This behaviour was considered undesirable — the Firebird 4.0 engine and above will now reject
them everywhere.

For details, see Prefixed Implicit Date/Time Literals Now Rejected in the Compatibility chapter.

Chapter 14. Bugs Fixed

167

http://tracker.firebirdsql.org/browse/CORE-5896
http://tracker.firebirdsql.org/browse/CORE-5785
http://tracker.firebirdsql.org/browse/CORE-5871
http://tracker.firebirdsql.org/browse/CORE-5862
http://tracker.firebirdsql.org/browse/CORE-5750
http://tracker.firebirdsql.org/browse/CORE-5728
http://tracker.firebirdsql.org/browse/CORE-5726
http://tracker.firebirdsql.org/browse/CORE-5717

fixed by A. dos Santos Fernandes

(CORE-5710) — Data type declaration DECFLOAT without precision should be using a default
precision.

fixed by A. Peshkov

(CORE-5700) — DECFLOAT underflow should yield zero instead of an error.

fixed by A. Peshkov

(CORE-5699) — DECFLOAT should not throw exceptions when +/-NaN, +/-sNaN and +/-Infinity is used
in comparisons.

fixed by A. Peshkov

(CORE-5646) — A parse error when compiling a statement would cause a memory leak until the
attachment was disconnected.

fixed by A. dos Santos Fernandes

(CORE-5612) — View operations (create, recreate or drop) were exhibiting gradual slow-down.

fixed by D. Yemanov

(CORE-5611) — Memory consumption for prepared statements was higher.

fixed by A. dos Santos Fernandes

(CORE-5593, CORE-5518) — The system function RDB$ROLE_IN_USE could not take long role names.

fixed by A. Peshkov

(CORE-5480) — A SUBSTRING start position smaller than 1 should be allowed.

fixed by A. dos Santos Fernandes

(CORE-1592) — Altering procedure parameters could lead to an unrestorable database.

Chapter 14. Bugs Fixed

168

http://tracker.firebirdsql.org/browse/CORE-5710
http://tracker.firebirdsql.org/browse/CORE-5700
http://tracker.firebirdsql.org/browse/CORE-5699
http://tracker.firebirdsql.org/browse/CORE-5646
http://tracker.firebirdsql.org/browse/CORE-5612
http://tracker.firebirdsql.org/browse/CORE-5611
http://tracker.firebirdsql.org/browse/CORE-5593
http://tracker.firebirdsql.org/browse/CORE-5518
http://tracker.firebirdsql.org/browse/CORE-5480
http://tracker.firebirdsql.org/browse/CORE-1592

fixed by A. dos Santos Fernandes

Server Crashes/Hang-ups

(CORE-5980) — Firebird would crash due to concurrent operations with expression indices. Same
fix was backported to Firebird 3.0.5.

fixed by V. Khorsun

(CORE-5972) — External engine trigger could crash the server if the table had a computed field.

fixed by A. dos Santos Fernandes

(CORE-5943) — The server could crash while preparing a query with both DISTINCT/ORDER BY and a
non-field expression in the select list. Same fix was backported to Firebird 3.0.5.

fixed by D. Yemanov

(CORE-5936) — The server could segfault at the end of a database backup.

fixed by V. Khorsun

Security

(CORE-5927) — With some non-standard authentication plugins, traffic would remain unencrypted
despite providing the correct crypt key. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5926) — An attempt to create a mapping with a non-ASCII user name that was encoded in a
single-byte codepage (e.g. WIN1251) would lead to a “Malformed string” error. Same fix was
backported to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5861) — New objects and some old objects in a database could not be granted the GRANT
OPTION via role privileges.

fixed by R. Simakov

Chapter 14. Bugs Fixed

169

http://tracker.firebirdsql.org/browse/CORE-5980
http://tracker.firebirdsql.org/browse/CORE-5972
http://tracker.firebirdsql.org/browse/CORE-5943
http://tracker.firebirdsql.org/browse/CORE-5936
http://tracker.firebirdsql.org/browse/CORE-5927
http://tracker.firebirdsql.org/browse/CORE-5926
http://tracker.firebirdsql.org/browse/CORE-5861

(CORE-5657) — Attended to various UDF-related security vulnerabilities, resulting in aggressive
deprecation of support for the use of UDFs as external functions. See also External Functions (UDFs)
Feature Deprecated in the the chapter Changes to the Firebird Engine and Deprecation of External
Functions (UDFs) in the Compatibility chapter.

fixed by A. Peshkov

(CORE-5639) — Mapping rule using WIN_SSPI plugin: Windows user group conversion to Firebird
role was not working.

fixed by A. Peshkov

(CORE-5518) — Firebird UDF string2blob() could allow remote code execution.

fixed by A. Peshkov

Utilities

gbak

(CORE-5855) — A database with generators containing space characters in their names could not be
backed up.

fixed by A. Peshkov

(CORE-5800) — After backup/restore, expression indexes on computed fields would not work
properly. Same fix was backported to Firebird 3.0.5.

fixed by D. Yemanov

(CORE-5637) — A string right truncation error was occurring on restore of the security database.

fixed by A. Peshkov

gpre

(CORE-5834) — gpre_boot was failing to link using cmake, giving undefined reference 'dladdr' and
'dlerror'. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

Chapter 14. Bugs Fixed

170

http://tracker.firebirdsql.org/browse/CORE-5657
http://tracker.firebirdsql.org/browse/CORE-5639
http://tracker.firebirdsql.org/browse/CORE-5518
http://tracker.firebirdsql.org/browse/CORE-5855
http://tracker.firebirdsql.org/browse/CORE-5800
http://tracker.firebirdsql.org/browse/CORE-5637
http://tracker.firebirdsql.org/browse/CORE-5934

trace

(CORE-5907) — Regression: Trace could not be launched if its 'database' section contained a regular
expression pattern with curvy brackets to enclose a quantifier. Same fix was backported to Firebird
3.0.5.

fixed by A. Peshkov

Build Issues

(CORE-5989) — Some build issues involving iconv / libiconv 1.15 vs libc / libiconv_open |
common/isc_file.cpp. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5955) — Static linking problem with ld >= 2.31. Same fix was backported to Firebird 3.0.5.

fixed by R. Simakov

Firebird 4.0 Alpha 1 Release: Bug Fixes
The following fixes to pre-existent bugs are noted:

(CORE-5545) — Using the POSITION parameter with the [RE]CREATE TRIGGER syntax would cause an
“unknown token” error if POSITION was written in the logically correct place, i.e. after the main
clauses of the statement. For example, the following should work because POSITION comes after the
other specifications:

RECREATE TRIGGER T1
BEFORE INSERT
ON tbl
POSITION 1 AS
BEGIN
 --
END

However, it would exhibit the error, while the following would succeed:

Chapter 14. Bugs Fixed

171

http://tracker.firebirdsql.org/browse/CORE-5907
http://tracker.firebirdsql.org/browse/CORE-5989
http://tracker.firebirdsql.org/browse/CORE-5955
http://tracker.firebirdsql.org/browse/CORE-5545

RECREATE TRIGGER T1
BEFORE INSERT
POSITION 1
ON tbl
AS
BEGIN
 --
END

The fix makes the first example correct, and the second should throw the error.

fixed by A. dos Santos Fernandes

(CORE-5454) — Inserting into an updatable view without an explicit column list would fail.

fixed by A. dos Santos Fernandes

(CORE-5408) — The result of a Boolean expression could not be concatenated with a string literal.

fixed by A. dos Santos Fernandes

(CORE-5404) — Inconsistent column and line references were being returned in error messages for
faulty PSQL definitions.

fixed by A. dos Santos Fernandes

(CORE-5237) — Processing of the include clause in configuration files was mishandling dot (‘.’) and
asterisk (‘*’) characters in the file name and path of the included file.

fixed by D. Sibiryakov

(CORE-5223) — Double dots in file names for databases were prohibited if the DatabaseAccess
configuration parameter was set to restrict access to a list of directories.

fixed by D. Sibiryakov

(CORE-5141) — Field definition would allow multiple NOT NULL clauses. For example,

create table t (a integer not null not null not null)

Chapter 14. Bugs Fixed

172

http://tracker.firebirdsql.org/browse/CORE-5454
http://tracker.firebirdsql.org/browse/CORE-5408
http://tracker.firebirdsql.org/browse/CORE-5404
http://tracker.firebirdsql.org/browse/CORE-5237
http://tracker.firebirdsql.org/browse/CORE-5223
http://tracker.firebirdsql.org/browse/CORE-5141

The fix makes the behaviour consistent with CREATE DOMAIN behaviour, and the example will return
the error “Duplicate specification of NOT NULL - not supported”.

fixed by D. Sibiryakov

(CORE-4701) — Garbage collection for indexes and BLOBs was not taking data in the Undo log into
account.

fixed by D. Sibiryakov

(CORE-4483) — In PSQL, data changed by executing a procedure was not visible to the WHEN handler
if the exception occurred in the called procedure.

fixed by D. Sibiryakov

(CORE-4424) — In PSQL, execution flow would roll back to the wrong savepoint if multiple
exception handlers were executed at the same level.

fixed by D. Sibiryakov

Chapter 14. Bugs Fixed

173

http://tracker.firebirdsql.org/browse/CORE-4701
http://tracker.firebirdsql.org/browse/CORE-4483
http://tracker.firebirdsql.org/browse/CORE-4424

Chapter 15. Firebird 4.0 Project Teams
Table 4. Firebird Development Teams

Developer Country Major Tasks

Dmitry Yemanov Russian
Federation

Full-time database engineer/implementor; core team
leader

Alex Peshkov Russian
Federation

Full-time security features coordinator; buildmaster;
porting authority

Vladyslav Khorsun Ukraine Full-time DB engineer; SQL feature
designer/implementor

Adriano dos Santos
Fernandes

Brazil International character-set handling; text and text
BLOB enhancements; new DSQL features; code
scrutineering

Roman Simakov Russian
Federation

Engine contributions

Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds

Pavel Cisar Czech
Republic

QA tools designer/coordinator; Firebird Butler
coordinator; Python driver developer

Pavel Zotov Russian
Federation

QA tester and tools developer

Philippe Makowski France QA tester and maintainer of EPEL kits

Paul Reeves France Windows installers and builds

Mark Rotteveel The
Netherlands

Jaybird implementer and co-coordinator;
Documentation writer

Jiri Cincura Czech
Republic

Developer and coordinator of .NET providers

Martin Koeditz Germany Developer and coordinator of PHP driver
Documentation translator

Alexander Potapchenko Russian
Federation

Developer and coordinator of ODBC/JDBC driver for
Firebird

Alexey Kovyazin Russian
Federation

Website coordinator

Paul Vinkenoog The
Netherlands

Coordinator, Firebird documentation project;
documentation writer and tools
developer/implementor

Norman Dunbar U.K. Documentation writer

Tomneko Hayashi Japan Documentation translator

Helen Borrie Australia Release notes editor; Chief of Thought Police

Chapter 15. Firebird 4.0 Project Teams

174

Appendix A: Licence Notice
The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this Licence.
Copies of the Licence are available at https://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and
https://www.firebirdsql.org/manual/pdl.html (HTML).

The Original Documentation is entitled Firebird 4.0 Release Notes.

The Initial Writer of the Original Documentation is: Helen Borrie. Persons named in attributions
are Contributors.

Copyright © 2004-2020. All Rights Reserved. Initial Writer contact: helebor at users dot sourceforge
dot net.

Appendix A: Licence Notice

175

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html

	Firebird 4.0 Release Notes
	Table of Contents
	Chapter 1. General Notes
	Bug Reporting
	Documentation

	Chapter 2. New In Firebird 4.0
	Summary of New Features
	Complete In Firebird 4.0 Final Release
	Complete In Release Candidate 1
	Complete In Beta 2
	Complete In Beta 1
	Compatibility with Older Versions

	Chapter 3. Changes in the Firebird Engine
	Maximum Page Size Increased To 32KB
	External Functions (UDFs) Feature Deprecated
	Support for International Time Zones
	Session Time Zone
	Time Zone Format
	Data Types for Time Zone Support
	API Support for Time Zones
	Time Zone Statements and Expressions
	Virtual table RDB$TIME_ZONES
	Package RDB$TIME_ZONE_UTIL
	Function DATABASE_VERSION
	Procedure TRANSITIONS

	Updating the Time Zone Database

	Firebird Replication
	Replication Modes
	Synchronous Mode
	Asynchronous Mode

	Access Modes
	Journaling
	About the LSS and OSS

	Error Reporting
	Setting Up Replication
	Setting Up the Primary Side
	Defining a Custom Replication Set
	Synchronous/Asynchronous Modes
	A Minimal Configuration
	Applying the Primary Side Settings

	Setting Up the Replica Side
	A Sample Replica Setup
	Applying the Replica Side Settings
	Creating a Replica Database

	Pooling of External Connections
	Key Characteristics of Connection Pooling
	How the Connection Pool Works
	New Connections

	Managing the Connection Pool
	Querying the Connection Pool
	Parameters for Configuring the Connection Pool

	Timeouts at Two levels
	Idle Session Timeouts
	How the Idle Session Timeout Works
	Setting the Idle Session Timeout
	Determining the Timeout that is In Effect
	SQL Syntax for Setting an Idle Session Timeout
	Support at API Level

	Context Variable Relating to Idle Session Timeouts
	Idle Session Timeouts in the Monitoring Tables

	Statement Timeouts
	How the Statement Timeout Works
	Setting a Statement Timeout
	Determining the Statement Timeout that is In Effect
	Notes about Statement Timeouts
	SQL Syntax for Setting a Statement Timeout
	Support for Statement Timeouts at API Level

	Context Variable relating to Statement Timeouts
	Statement Timeouts in the Monitoring Tables
	Support for Statement Timeouts in isql

	Commit Order for Capturing the Database Snapshot
	The 'Commit Order' Approach
	Commit Order for Transactions
	Special Values for the Transaction CN
	The Rule for Record Visibility
	Implementation details
	Block Size

	Read Consistency for Statements in Read-Committed Transactions
	Solving the Inconsistent Read Problem
	New Isolation Sub-Level for READ COMMITTED
	Handling of Update Conflicts
	Read Committed Read-Only Transactions
	Syntax and Configuration

	Garbage Collection

	Precision Improvement for Calculations Involving NUMERIC and DECIMAL
	Increased Number of Formats for Views
	Optimizer Improvement for GROUP BY
	xinetd Support on Linux Replaced
	Support for RISC v.64 Platform
	Virtual table RDB$CONFIG

	Chapter 4. Changes to the Firebird API and ODS
	ODS (On-Disk Structure) Changes
	New ODS Number
	New System Tables
	New Columns in System Tables

	Application Programming Interfaces
	Services Cleanup
	Services API Extensions
	Support for nbackup -fixup

	Timeouts for Sessions & Statements
	Session Timeouts
	Statement Timeouts

	New Isolation Sub-level for READ COMMITTED Transactions
	Support for Batch Insert and Update Operations in the API
	Creating a Batch
	Creating the Batch Interface
	Getting the Message Format
	A Message Buffer

	Executing the Batch
	Cleaning Up

	Multiple Messages per Call
	Passing In-line BLOBs in Batch Operations
	BLOB usage policy
	Over-sized BLOBs
	User-Supplied BLOB IDs

	Streams vs Segments
	Overriding to Use Segmented BLOBs
	Multiple BLOBs Using Streams
	Bigger BLOBS in the Stream

	Registering a Standard BLOB

	Batch Ops in the Legacy (ISC) API

	API Support for Time Zones
	Structures (structs)
	API Functions: (FirebirdInterface.idl — IUtil interface)

	API Support for DECFLOAT and Long Numerics
	Additions to Other Interfaces
	Extensions to various getInfo() Methods
	Attachment::getInfo()
	Statement::getInfo()
	Transaction::getInfo()

	Additions to the Legacy (ISC) API

	Chapter 5. Reserved Words and Changes
	New Keywords in Firebird 4.0
	Reserved
	Non-reserved

	Chapter 6. Configuration Additions and Changes
	Parameters for Timeouts
	ConnectionIdleTimeout
	StatementTimeout

	Parameters for External Connection Pooling
	ExtConnPoolSize
	ExtConnPoolLifetime

	Parameters to Restrict Length of Object Identifiers
	MaxIdentifierByteLength
	MaxIdentifierCharLength

	Parameters Supporting Read Consistency in Transactions
	ReadConsistency
	TipCacheBlockSize
	SnapshotsMemSize

	Other Parameters
	ClientBatchBuffer
	DataTypeCompatibility
	DefaultTimeZone
	OutputRedirectionFile
	Srp256 becomes the default authentication method
	ChaCha is added as a default wire encryption method
	TempCacheLimit at database level
	UseFileSystemCache is added as a replacement for FileSystemCacheThreshold
	InlineSortThreshold

	Chapter 7. Security
	Enhanced System Privileges
	List of Valid System Privileges
	New Grantee Type SYSTEM PRIVILEGE
	Assigning System Privileges to a Role
	The SET SYSTEM PRIVILEGES Clause
	Dropping System Privileges from a Role

	Function RDB$SYSTEM_PRIVILEGE

	Granting a Role to Another Role
	The DEFAULT Keyword
	WITH ADMIN OPTION Clause
	Example Using a Cumulative Role
	Revoking the DEFAULT Property of a Role Assignment
	Function RDB$ROLE_IN_USE
	List Currently Active Roles

	SQL SECURITY Feature
	Triggers
	Examples Using the SQL SECURITY Property

	Built-in Cryptographic Functions
	ENCRYPT() and DECRYPT()
	RSA_PRIVATE()
	RSA_PUBLIC()
	RSA_ENCRYPT()
	RSA_DECRYPT()
	RSA_SIGN_HASH()
	RSA_VERIFY_HASH()

	Improvements to Security Features
	User Managing Other Users

	Chapter 8. Management Statements
	Connections Pooling Management
	ALTER EXTERNAL CONNECTIONS POOL

	ALTER SESSION RESET
	Errors handling

	Time Zone Management
	SET TIME ZONE

	Timeout Management
	Setting DECFLOAT Properties
	Setting Data Type Coercion Rules

	Chapter 9. Data Definition Language (DDL)
	Quick Links
	Extended Length for Object Names
	Restricting the Length

	New Data Types
	Data Type INT128
	Data Types TIME WITH TIME ZONE and TIMESTAMP WITH TIME ZONE
	Data Type DECFLOAT
	Aspects of DECFLOAT Usage
	Length of Literals
	Use with Standard Functions
	Special Functions for DECFLOAT
	Session Control Operator SET DECFLOAT

	DDL Enhancements
	Increased Precision for Exact Numeric Types
	Standard Compliance for Data Type FLOAT
	Data Type Extensions for Time Zone Support
	Aliases for Binary String Types
	Extensions to the IDENTITY Type
	Extended Syntax for Managing IDENTITY Columns
	The Firebird 4 Extensions to IDENTITY
	The GENERATED ALWAYS and BY DEFAULT Directives
	Changing the Defined Behaviour

	DROP IDENTITY Clause
	INCREMENT BY Option for IDENTITY Columns
	Changing the Increment (Step) Value

	Implementation

	Excess parameters in EXECUTE STATEMENT
	Replication Management
	Extended Syntax for Replication Management

	Chapter 10. Data Manipulation Language (DML)
	Quick Links
	Lateral Derived Tables
	DEFAULT Context Value for Inserting and Updating
	DEFAULT vs DEFAULT VALUES

	OVERRIDING Clause for IDENTITY Columns
	Extension of SQL Windowing Features
	Frames for Window Functions
	Navigational Functions with Frames
	Example Using Frames

	Named Windows
	More Window Functions

	FILTER Clause for Aggregate Functions
	Syntax for FILTER Clauses

	Optional AUTOCOMMIT for SET TRANSACTION
	Sharing Transaction Snapshots
	Expressions and Built-in Functions
	New Functions and Expressions
	Functions & Expressions for Timezone Operations
	AT Expression
	LOCALTIME Expression
	LOCALTIMESTAMP Expression

	Two New Date/Time Functions
	Security Functions
	Special Functions for DECFLOAT
	Function RDB$GET_TRANSACTION_CN: Supporting Snapshots Based on Commit Order
	Function MAKE_DBKEY
	BASE64_ENCODE() and BASE64_DECODE()
	HEX_ENCODE() and HEX_DECODE()
	CRYPT_HASH()

	Changes to Built-in Functions and Expressions
	Changes Arising from Timezone Support
	EXTRACT Expressions
	Changes in CURRENT_TIME and CURRENT_TIMESTAMP

	HASH()

	SUBSTRING()
	UDF Changes
	New UDR GetExactTimestampUTC

	Miscellaneous DML Improvements
	Improve Error Message for an Invalid Write Operation
	Improved Failure Messages for Expression Indexes
	RETURNING * Now Supported

	Chapter 11. Procedural SQL (PSQL)
	Recursion for subroutines
	A Helper for Logging Context Errors
	System Function RDB$ERROR()
	Contexts
	Example of RDB$ERROR

	Allow Management Statements in PSQL Blocks

	Chapter 12. Monitoring & Command-line Utilities
	Monitoring
	nbackup
	UUID-based Backup and In-Place Merge
	Making Backups
	Merging-in-Place from the Backup
	Example of an On-line Backup and Restore

	Restore and Fixup for Replica Database

	isql
	Support for Statement Timeouts
	Better transaction control

	gbak
	Backup and Restore with Encryption
	Prerequisites
	New Switches for Encrypted Backups & Restores
	Usage and Examples

	Enhanced Restore Performance
	Friendlier “-fix_fss_*” Messages
	Ability to Backup/Restore Only Specified Tables

	gfix
	Configuring and managing replication

	Chapter 13. Compatibility Issues
	SQL
	Deprecation of Legacy SQL Dialect 1
	Read Consistency for READ COMMITTED transactions Used By Default
	Deprecation of External Functions (UDFs)
	The UDF Migration Script
	How to Work with the Script

	What If You MUST Use a UDF?

	Changes in DDL and DML Due to Timezone Support
	Changes to Data Types TIMESTAMP and TIME
	CURRENT_TIME and CURRENT_TIMESTAMP

	Prefixed Implicit Date/Time Literals Now Rejected
	Starting Value of Sequences
	INSERT … RETURNING Now Requires a SELECT privilege

	Utilities
	Deprecation of QLI

	Chapter 14. Bugs Fixed
	Firebird 4.0 Release: Bug Fixes
	Core Engine
	Server Crashes/Hang-ups
	API/Remote Interface
	Build Issues
	Utilities
	isql
	gbak
	gstat

	Firebird 4.0 Release Candidate 1: Bug Fixes
	Core Engine
	Server Crashes/Hang-ups
	API/Remote Interface
	Build Issues
	Utilities
	isql
	gbak

	Firebird 4.0 Beta 2 Release: Bug Fixes
	Core Engine
	Server Crashes/Hang-ups
	API/Remote Interface
	Build Issues
	Utilities
	isql
	gbak
	gfix

	Firebird 4.0 Beta 1 Release: Bug Fixes
	Core Engine
	Server Crashes/Hang-ups
	Security
	Utilities
	gbak
	gpre
	trace

	Build Issues

	Firebird 4.0 Alpha 1 Release: Bug Fixes

	Chapter 15. Firebird 4.0 Project Teams
	Appendix A: Licence Notice

